中文
Announcement
More
Progress in Chemistry 2019, Vol. 31 Issue (2/3): 433-441 DOI: 10.7536/PC180623 Previous Articles   Next Articles

Electroautotrophic Microorganisms:Uptaking Extracellular Electron and Catalyzing CO2 Fixation and Synthesis

Hong Su1,2, Yejun Han1,**()   

  1. 1. National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
    2. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received: Online: Published:
  • Contact: Yejun Han
  • About author:
    ** E-mail:
  • Supported by:
    National Natural Science Foundation of China(21676279); Strategic Priority Research Program of the Chinese Academy of Sciences(XDA13040102); Priority Program of National Key Laboratory of Biochemical Engineering of China
Richhtml ( 8 ) PDF ( 502 ) Cited
Export

EndNote

Ris

BibTeX

Electroautotrophic microorganisms can uptake electrons from extracellular solid donors such as metallic iron or steel, electrodes, and symbiotic microbial cells. Fuels and commodity chemicals can be produced from CO2 in a bioelectrochemical system powered by electricity and catalyzed by electroautotrophic microorganisms since they are often able to reduce and fix CO2. Thus, this provides a new and promising strategy to cope with the word energy crisis and greenhouse effect. Metabolic properties and electron uptake abilities of electroautotrophic microorganisms have direct and significant influences on viability and productivity of electrosynthesis processes. In this review, a diversity of microbial physiologies uptaking electrons from iron or steel, electrode and microbial cell, including sulphate reduction, methanogenesis, acetogenesis and nitrate reduction, are respectively summarized in the first place. Then, research progress of electrosynthesis of methane, acetate and other chemicals catalyzed by diverse electroautotrophic microorganisms are reviewed. And strategies for improving CO2 fixation and electrosynthesis efficiency and diversifying the products are emphasized, such as defined co-culture construction, cathode material modification and so on. At last, research efforts in clarifying extracellular electron transfer mechanism, catalyzing microorganisms screening and co-culture construction, and genetic engineering of electroautotrophic microbes are proposed as future directions for researchers.

Table 1 Major isolated strains identified as EMIC-inducing microorganisms
Table 2 Major microorganisms acquire electrode electrons related to MES
Fig. 1 Schematic diagram of microbial electrosynthesis from CO2 [32, 38]
Table 3 Part of research involving in microbial electrosynthesis
Product Microorganism Cathode Cathode potential
(V vs. SHE)
Productivity
(mmol·m-2·d-1)
Coulombic efficiency
(%)
ref
CH4
Methanobacterium palustre Carbon cloth -0.80 200 96 18
Desulfopila corrodens strain IS4 &
Methanococcus maripaludis strain MM901
Graphite -0.40
-0.50
24~33.6
144~216
90~110a 40
Methanogenic culture Carbon cloth -0.90 0.055 mmol·d-1·mgVSS-1 80 41
Anaerobic sludge Graphite felt -0.70 115.7 / 42
Methanogenic culture Graphite rod An applied
potential of
0.60
0.47 mL·cm-2·d-1 ~70 43
Acetate
Sporomusa ovata Graphite -0.40 23 85 30
Sporomusa ovata Carbon cloth -0.40 ~6 ~76 47
Sporomusa ovata Carbon cloth treated with Chitosan -0.40 ~45.8 ~86 47
Sporomusa ovata Carbon cloth treated
with Cyanuric
chloride
-0.40 ~41 ~81 47
Sporomusa ovata Carbon cloth treated with Au -0.40 ~36.2 ~83
Sporomusa ovata Ni nanowire coated graphite -0.40 56.4 ~82 48
Sporomusa ovata 3D graphene
functionalized
carbon felt
-0.69 ~231.4 ~86.5 49
Sporomusa silvacetica Graphite -0.40 1.06 ~48 31
Sporomusa sphaeroides Graphite -0.40 0.77 ~84
Clostridium ljungdahlii Graphite -0.40 2.37 ~82
Clostridium aceticum Graphite -0.40 0.98 ~53
Moorella thermoacetica Graphite -0.40 1.74 ~85
Moorella thermoautotrophica penicillin treatment Graphite plate -0.60 vs. SCE 7.14 ~88 50
Moorella thermoautotrophica Carbon felt
immobilized with
microbes
-0.40 58.2 65 51
Desulfopila corrodens strain IS4 & Acetobacterium woodii Graphite -0.40
-0.50
50.4~55.2
136.8~177.6
90~110a 40
Acetogenic mixture Graphene-nickel foam -0.85 3.11 mM·d-1 70 53
Acetogenic mixture Carbon felt with self-assembled graphene oxide/biofilm -0.85 0.17 g·L-1·d-1 77 54
Glycerol Geobacter sulfurreducens Stainless steel -0.40 / / 56
Isobutanol
Isoamylol
Ralstonia eutropha strain LH740D In foil -1.40 17.0
8.0
/ 26
Wax ester Sporomusa ovata & Acinetobacter baylyi Graphite stick -0.69 38 μmol·L-1 4.6 60
[1]
Koch C, Harnisch F . ChemElectroChem, 2016,3:1282.
[2]
李锋(Li F), 宋浩(Song H)) . 生物工程学报 (Chinese Journal of Biotechnology), 2017,33(3):516.
[3]
Enning D, Garrelfs J . Appl. Environ. Microbiol., 2014,80(4):1226. https://www.ncbi.nlm.nih.gov/pubmed/24317078

doi: 10.1128/AEM.02848-13 pmid: 24317078
[4]
许萍(Xu P), 翟羽佳(Zhai Y J), 高飞(Gao F), 汪长征(Wang C Z), 张雅君(Zhang Y J) . 腐蚀科学与防护技术 (Corrosion Science and Protection Technology), 2017,29(3):307.
[5]
Dinh H T, Kuever J, Mussmann M, Hassel A W, Stratmann M, Widdel F . Nature, 2004,427(6977):829. https://www.ncbi.nlm.nih.gov/pubmed/14985759

doi: 10.1038/nature02321 pmid: 14985759
[6]
Venzlaff H, Enning D, Srinivasan J, Mayrhofer K J J, Hassel A W, Widdel F, Stratmann M . Corrosion Sci., 2013,66:88.
[7]
Enning D, Venzlaff H, Garrelfs J, Dinh H T, Meyer V, Mayrhofer K, Hassel A W, Stratmann M, Widdel F . Environ. Microbiol., 2012,14(7):1772. https://www.ncbi.nlm.nih.gov/pubmed/22616633

doi: 10.1111/j.1462-2920.2012.02778.x pmid: 22616633
[8]
Daniels L, Belay N, Rajagopal B S, Weimer P J . Science, 1987,1987(237):4814.
[9]
Uchiyama T, Ito K, Mori K, Tsurumaru H, Harayama S . Appl. Environ. Microbiol., 2010,76(6):1783. https://www.ncbi.nlm.nih.gov/pubmed/20118376

doi: 10.1128/AEM.00668-09 pmid: 20118376
[10]
Kato S . Microb. Biotechnol., 2016,9(2):141. https://www.ncbi.nlm.nih.gov/pubmed/26863985

doi: 10.1111/1751-7915.12340 pmid: 26863985
[11]
Mand J, Park H S, Jack T R, Voordouw G . Front. Microbiol., 2014,5:268. https://www.ncbi.nlm.nih.gov/pubmed/24917861

doi: 10.3389/fmicb.2014.00268 pmid: 24917861
[12]
Kato S, Yumoto I, Kamagata Y . Appl. Environ. Microbiol., 2015,81(1):67. https://www.ncbi.nlm.nih.gov/pubmed/25304512

doi: 10.1128/AEM.02767-14 pmid: 25304512
[13]
Xu D, Li Y, Song F, Gu T . Corrosion Sci., 2013,77:385.
[14]
Jia R, Yang D, Xu J, Xu D, Gu T . Corrosion Sci., 2017,127:1.
[15]
Xia J, Xu D, Nan L, Liu H, Li Q, Yang K . Chin. J. Mater. Res., 2016,30(3):161.
[16]
Iino T, Ito K, Wakai S, Tsurumaru H, Ohkuma M, Harayama S . Appl. Environ. Microbiol., 2015,81(5):1839. https://www.ncbi.nlm.nih.gov/pubmed/25548048

doi: 10.1128/AEM.03741-14 pmid: 25548048
[17]
Iino T, Sakamoto M, Ohkuma M . Int. J. Syst. Evol. Microbiol., 2015,65(9):2865. https://www.ncbi.nlm.nih.gov/pubmed/25991662

doi: 10.1099/ijs.0.000343 pmid: 25991662
[18]
Cheng S, Xing D, Call DF, Logan BE . Environ. Sci. Technol., 2009,43(10):3953. https://www.ncbi.nlm.nih.gov/pubmed/19544913

doi: 10.1021/es803531g pmid: 19544913
[19]
朱华伟(Zhu H W), 张延平(Zhang Y P), 李寅(Li Y) . 中国科学:生命科学 (SCIENTIA SINICA Vitae), 2016,46(12):1388.
[20]
Gregory K B, Bond D R, Lovley D R . Environ. Microbiol., 2004,6(6):596. https://www.ncbi.nlm.nih.gov/pubmed/15142248

doi: 10.1111/j.1462-2920.2004.00593.x pmid: 15142248
[21]
Ishii T, Kawaichi S, Nakagawa H, Hashimoto K, Nakamura R . Front. Microbiol., 2015,6:994. https://www.ncbi.nlm.nih.gov/pubmed/26500609

doi: 10.3389/fmicb.2015.00994 pmid: 26500609
[22]
Carbajosa S, Malki M, Caillard R, Lopez M F, Palomares F J, Martin-Gago J A, Rodriguez N, Amils R, Fernandez V M, De Lacey A L . Biosens. Bioelectron., 2010,26(2):877. https://www.ncbi.nlm.nih.gov/pubmed/20678913

doi: 10.1016/j.bios.2010.07.037 pmid: 20678913
[23]
Summers Z M, Gralnick J A, Bond D R . mBio, 2013,4(1):e00420. https://www.ncbi.nlm.nih.gov/pubmed/23362318

doi: 10.1128/mBio.00420-12 pmid: 23362318
[24]
Bose A, Gardel E J, Vidoudez C, Parra E A, Girguis P R . Nat. Commun., 2014,5:3391. https://www.ncbi.nlm.nih.gov/pubmed/24569675

doi: 10.1038/ncomms4391 pmid: 24569675
[25]
Torella J P, Gagliardi C J, Chen J S, Bediako D K, Colon B, Way J C, Silver P A, Nocera D G . Proc. Natl. Acad. Sci. U. S. A., 2015,112(8):2337. https://www.ncbi.nlm.nih.gov/pubmed/25675518

doi: 10.1073/pnas.1424872112 pmid: 25675518
[26]
Li H, Opgenorth P H, Wernick D, Liao J . Science, 2012,335:1596. https://www.ncbi.nlm.nih.gov/pubmed/22461604

doi: 10.1126/science.1217643 pmid: 22461604
[27]
Khunjar W O, Sahin A, West A C, Chandran K, Banta S . PLoS One, 2012,7(9):e44846. https://www.ncbi.nlm.nih.gov/pubmed/23028643

doi: 10.1371/journal.pone.0044846 pmid: 23028643
[28]
Nichols E M, Gallagher J J, Liu C, Su Y, Resasco J, Yu Y, Sun Y, Yang P, Chang M C Y, Chang C J . Proc. Natl. Acad. Sci. U. S. A., 2015,112(37):11461. https://www.ncbi.nlm.nih.gov/pubmed/26305947

doi: 10.1073/pnas.1508075112 pmid: 26305947
[29]
Beese-Vasbender P F, Grote J P, Garrelfs J, Stratmann M, Mayrhofer K J J . Bioelectrochemistry, 2015,102:50. https://www.ncbi.nlm.nih.gov/pubmed/25486337

doi: 10.1016/j.bioelechem.2014.11.004 pmid: 25486337
[30]
Nevin K P, Woodard T L, Franks A E, Summers Z M, Lovley D R . mBio, 2010,1(2):e00103. https://www.ncbi.nlm.nih.gov/pubmed/20714445

doi: 10.1128/mBio.00103-10 pmid: 20714445
[31]
Nevin K P, Hensley S A, Franks A E, Summers Z M, Ou J, Woodard T L, Snoeyenbos-West O L, Lovley D R . Appl. Environ. Microbiol., 2011,77(9):2882. https://www.ncbi.nlm.nih.gov/pubmed/21378039

doi: 10.1128/AEM.02642-10 pmid: 21378039
[32]
Tremblay P L, Angenent L T, Zhang T . Trends Biotechnol., 2017,35(4):360. https://www.ncbi.nlm.nih.gov/pubmed/27816255

doi: 10.1016/j.tibtech.2016.10.004 pmid: 27816255
[33]
McGlynn S E, Chadwick G L, Kempes C P, Orphan V J . Nature, 2015,526(7574):531. https://www.ncbi.nlm.nih.gov/pubmed/26375009

doi: 10.1038/nature15512 pmid: 26375009
[34]
Wegener G, Krukenberg V, Riedel D, Tegetmeyer H E, Boetius A . Nature, 2015,526(7574):587. https://www.ncbi.nlm.nih.gov/pubmed/26490622

doi: 10.1038/nature15733 pmid: 26490622
[35]
Rotaru A E, Shrestha P M, Liu F, Markovaite B, Chen S, Nevin K P, Lovley D R . Appl. Environ. Microbiol., 2014,80(15):4599. https://www.ncbi.nlm.nih.gov/pubmed/24837373

doi: 10.1128/AEM.00895-14 pmid: 24837373
[36]
Rotaru A E, Shrestha P M, Liu F, Shrestha M, Shrestha D, Embree M, Zengler K, Wardman C, Nevin K P, Lovley D R . Energy Environ. Sci., 2014,7(1):408.
[37]
Summers Z M, Fogarty H E, Leang C, Franks A E, Malvankar N S, Lovley D R . Science, 2010,330(6009):1413. https://www.ncbi.nlm.nih.gov/pubmed/21127257

doi: 10.1126/science.1196526 pmid: 21127257
[38]
Rabaey K, Rozendal R A . Nat. Rev. Microbiol., 2010,8(10):706. https://www.ncbi.nlm.nih.gov/pubmed/20844557

doi: 10.1038/nrmicro2422 pmid: 20844557
[39]
Aulenta F, Reale P, Catervi A, Panero S, Majone M . Electrochim. Acta, 2008,53(16):5300.
[40]
Deutzmann J S, Spormann A M . ISME J., 2017,11(3):704. https://www.ncbi.nlm.nih.gov/pubmed/27801903

doi: 10.1038/ismej.2016.149 pmid: 27801903
[41]
Villano M, Aulenta F, Ciucci C, Ferri T, Giuliano A, Majone M . Bioresour. Technol., 2010,101(9):3085.
[42]
Baek G, Kim J, Lee S, Lee C . Bioresour. Technol., 2017,241:1201. https://www.ncbi.nlm.nih.gov/pubmed/28688737

doi: 10.1016/j.biortech.2017.06.125 pmid: 28688737
[43]
Giang H, Zhang J, Zhu Z, Suni I I, Liang Y . Int. J. Energy Res., 2018,42(3):1308.
[44]
Van Eerten-Jansen M C A A, Heijne A T, Buisman C J N, Hamelers H V M . Int. J. Energy Res., 2012,36(6):809.
[45]
Fast A G, Papoutsakis E T . Curr. Opin. Chem. Eng., 2012,1(4):380.
[46]
Aryal N, Tremblay P L, Lizak D M, Zhang T . Bioresour. Technol., 2017,233:184. https://www.ncbi.nlm.nih.gov/pubmed/28279911

doi: 10.1016/j.biortech.2017.02.128 pmid: 28279911
[47]
Zhang T, Nie H, Bain T S, Lu H, Cui M, Snoeyenbos-West O L, Franks A E, Nevin K P, Russell T P, Lovley D R . Energy Environ. Sci., 2013,6(1):217.
[48]
Nie H, Zhang T, Cui M, Lu H, Lovley D R, Russell T P . Phys. Chem. Chem. Phys., 2013,15(34):14290. https://www.ncbi.nlm.nih.gov/pubmed/23881181

doi: 10.1039/c3cp52697f pmid: 23881181
[49]
Aryal N, Halder A, Tremblay P L, Chi Q, Zhang T . Electrochim. Acta, 2016,217:117.
[50]
Chen S, Fang Y, Jing X, Luo H, Chen J, Zhou S . Bioelectrochemistry, 2018,121:151. https://www.ncbi.nlm.nih.gov/pubmed/29453055

doi: 10.1016/j.bioelechem.2018.02.003 pmid: 29453055
[51]
Yu L, Yuan Y, Tang J, Zhou S . Bioelectrochemistry, 2017,117:23. https://www.ncbi.nlm.nih.gov/pubmed/28525799

doi: 10.1016/j.bioelechem.2017.05.001 pmid: 28525799
[52]
Bajracharya S, Yuliasni R, Vanbroekhoven K, Buisman C J, Strik D P, Pant D . Bioelectrochemistry, 2017,113:26. https://www.ncbi.nlm.nih.gov/pubmed/27631151

doi: 10.1016/j.bioelechem.2016.09.001 pmid: 27631151
[53]
Song T S, Fei K, Zhang H, Yuan H, Yang Y, Ouyang P, Xie J . J. Chem. Technol. Biotechnol., 2018,93(2):457.
[54]
Song T S, Zhang H, Liu H, Zhang D, Wang H, Yang Y, Yuan H, Xie J . Bioresour. Technol., 2017,243:573. https://www.ncbi.nlm.nih.gov/pubmed/28704738

doi: 10.1016/j.biortech.2017.06.164 pmid: 28704738
[55]
Ganigue R, Puig S, Batlle-Vilanova P, Balaguer M D, Colprim J . Chem. Commun., 2015,51(15):3235. https://www.ncbi.nlm.nih.gov/pubmed/25608945

doi: 10.1039/c4cc10121a pmid: 25608945
[56]
Soussan L, Riess J, Erable B, Delia M L, Bergel A . Electrochem. Commun., 2013,28:27.
[57]
Berzin V, Kiriukhin M, Tyurin M . Letters in Applied Microbiology, 2012,55(2):149. https://www.ncbi.nlm.nih.gov/pubmed/22642684

doi: 10.1111/j.1472-765X.2012.03272.x pmid: 22642684
[58]
Berzin V, Kiriukhin M, Tyurin M . Appl. Biochem. Biotechnol., 2012,167(2):338. https://www.ncbi.nlm.nih.gov/pubmed/22549584

doi: 10.1007/s12010-012-9697-5 pmid: 22549584
[59]
Krieg T, Sydow A, Faust S, Huth I, Holtmann D . Angew. Chem. Int. Edit., 2018,57(7):1879. http://doi.wiley.com/10.1002/anie.201711302

doi: 10.1002/anie.201711302
[60]
Lehtinen T, Efimova E, Tremblay P L, Santala S, Zhang T, Santala V . Bioresour. Technol., 2017,243:30. https://www.ncbi.nlm.nih.gov/pubmed/28651136

doi: 10.1016/j.biortech.2017.06.073 pmid: 28651136
No related articles found!