English
新闻公告
More
化学进展 2019, Vol. 31 Issue (4): 580-596 DOI: 10.7536/PC180908 前一篇   后一篇

• •

光热转换材料及其在脱盐领域的应用

郭星星1, 高航1, 殷立峰2, 王思宇3, 代云容1,**, 冯传平1   

  1. 1. 中国地质大学(北京)水资源与环境学院 水资源与环境工程北京市重点实验室 地下水循环与环境演化教育部重点实验室 北京 100083
    2. 北京师范大学环境学院 北京 100875
    3. 中国环境科学研究院流域水环境污染综合治理研究中心 北京 100012
  • 收稿日期:2018-08-16 出版日期:2019-01-15 发布日期:2019-01-14
  • 通讯作者: 代云容
  • 基金资助:
    国家自然科学基金项目(21777009); 国家自然科学基金项目(21407138); 北京市自然科学基金项目(8182031); 中央高校基本科研业务费专项资金项目(649911019)

Photo-Thermal Conversion Materials and Their Application in Desalination

Xingxing Guo1, Hang Gao1, Lifeng Yin2, Siyu Wang3, Yunrong Dai1,**, Chuanping Feng1   

  1. 1. School of Water Resources and Environment, Beijing Key Laboratory of Water Resources & Environmental Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences(Beijing), Beijing 100083, China
    2. School of Environment, Beijing Normal University, Beijing 100875, China
    3. Basin Research Center for Water Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
  • Received:2018-08-16 Online:2019-01-15 Published:2019-01-14
  • Contact: Yunrong Dai
  • About author:
  • Supported by:
    National Natural Science Foundation of China(21777009); National Natural Science Foundation of China(21407138); Beijing Natural Science Foundation(8182031); Fundamental Research Funds for the Central Universities(649911019)

光热脱盐技术在缓解水资源短缺和减少水环境污染等方面具有重要的应用前景,已吸引了各国研究者的广泛关注。光热脱盐主要是利用光热转换材料将吸收的太阳光能直接、高效地转化为热能,以蒸发水分实现含盐水脱盐和水质净化,其效率取决于光热转换材料的性能。本文综述了近年来太阳能光热转换材料如金属基材料、碳基材料、半导体材料、有机聚合物材料、复合光热材料的研究现状及其光热转换机理,并介绍了光热转换材料在脱盐领域的应用进展。基于上述分析,对光热转换材料在未来脱盐领域的研究前景进行了展望,提出应针对光热转换材料的低强度全光谱吸收和高效转化利用、光热稳定性和重复使用性提高,以及光热脱盐系统的热传递损失最小化和热量利用最大化等方面进行深入探析。

Photo-thermal desalination has attracted extensive attention because of its potential applications in solving the problems of water resources shortage and water pollution. During the process of photo-thermal desalination, photo-thermal conversion materials are applied to absorb the solar energy and then convert the solar energy into the heat energy directly and efficiently, meanwhile the heat energy is used to evaporate, desalinate, and purify the saline water. To a great extent, the efficiency of photo-thermal desalination depends on the properties of the applied photo-thermal conversion materials. In this paper, recent researches on solar photo-thermal conversion materials, including metal-based materials, carbon-based materials, semiconductor materials, organic polymer materials, and composite photo-thermal materials are reviewed; the photo-thermal conversion mechanism are summarized. Moreover, the application progress of photo-thermal conversion materials in the field of desalination is also introduced. Based on the above analyses, the research prospects of photo-thermal conversion materials in the field of desalination are discussed. We propose that the future research should focus on the efficient absorption and utilization of photo-thermal conversion materials for the low intensity and full spectrum sun light, the improvement of thermal stability and reusability of photo-thermal conversion materials, and the minimum heat transfer loss and the maximum heat utilization efficiency of photo-thermal desalination system.

()
图1 光热转换材料处理含盐水示意图
Fig. 1 Schematic of treatment of saline water with photo-thermal conversion material
图2 金属粒子经表面等离子共振效应进行光热转换的示意图[20]
Fig. 2 Schematic of photo-thermal conversion of metal particles through surface plasmon resonance process[20]
图3 半导体材料经光能激发电子产生热能示意图
Fig. 3 Schematic of the generation of thermal energy by photo-thermal electronic excitation of semiconductor materials
图4 碳基材料经超共轭效应进行光热转换的示意图
Fig. 4 Schematic of photo-thermal conversion of carbon-based materials through super-conjugation effect
图5 铝基等离子体吸收剂的吸收光谱图[55]
Fig. 5 Absorption spectrum of aluminum-based plasmonic absorbers[55]
图6 rGO薄膜、rGOF-DS(rGO泡沫)和VA-GSM在250~2500 nm波长范围内的吸收光谱[71]
Fig. 6 Absorbance spectra of rGO film, rGOF-DS, and VA-GSM in the wavelength range of 250~2500 nm[71]
图7 模拟太阳光下Ti2O3样品的温升曲线和光源关闭后的降温曲线[10]
Fig. 7 A typical temperature-time relationship showing the increase in the temperature of the Ti2O3 sample under irradiation from a solar simulator and the decay trace of temperature after the irradiation is turned off[10]
图8 CNT纳米流体局部太阳能加热和蒸气产生示意图[12]
Fig. 8 Schematic of treatment of saline water with photo-thermal conversion materials[12]
图9 HNG中基于独特水输送的高效太阳能蒸发示意图[112]
Fig. 9 Schematic of highly efficient solar vapor generation based on tailored water transport in HNGs[112]
图10 提高太阳能蒸发效率的三维光热结构示意图[87]
Fig. 10 Scheme of the 3D photothermal structure toward improved energy efficiency in solar steam generation[87]
表1 典型光热转换材料性能对比
Table 1 Performance comparison of typical photo-thermal conversion materials
[1]
王聪(Wang C), 代蓓蓓(Dai B B), 于佳玉(Yu J Y), 王蕾(Wang L), 孙莹(Sun Y) . 硅酸盐学报(Journal of the Chinese Ceramic Society), 2017,45:1555.
[2]
程珙(Cheng G) . 哈尔滨工业大学硕士论文(Master Dissertation of Harbin Institute of Technology), 2017.
[3]
Zhang L B, Tang B, Wu J B, Li R Y, Wang P . Adv. Mater 2015,27:4889.
[4]
Li R Y, Zhang L B, Shi L, Wang P . ACS Nano, 2017,11:3752.
[5]
Fan P X, Wu H, Zhong M L, Zhang H J, Bai B F, Jin G F . Nanoscale, 2016,8:14617.
[6]
Zhang Q, Xu W L ,Wang X B. Sci. China Mater, 2018,61:905.
[7]
Zhu G L, Xu J J, Zhao W L ,Huang F Q. ACS Appl. Mater. Inter, 2016,8:31716.
[8]
Martinopoulos G, Ikonomopoulos A, Tsilingiridis G . Desalination, 2016,399:165.
[9]
Lin H, Wang X G, Yu L D, Chen Y ,Shi J L. Nano Lett, 2017,17:384.
[10]
Wang J, Li Y Y, Deng L, Wei N N, Weng Y K, Dong S, Qi D P, Qiu J, Chen X D, Wu T . Adv. Mater 2017,29:1.
[11]
Tian J L, Zhang W, Gu J J, Deng T, Zhang D . Nano Energy, 2015,17:52.
[12]
Wang X Z, He Y R, Cheng G, Shi L, Liu X ,Zhu J Q. Energy Convers. Manage., 2016,130:176.
[13]
李欣远(Li X Y), 纪穆为(Ji M W), 王虹智(Wang H Z), 涂国鹏(Tu G P), 万晓冬(Wan X D), 刘佳佳(Liu J J), 刘佳(Liu J), 徐萌(Xu M), 张加涛(Zhang J T) . 中国光学(Chinese Optics Letters), 2017,10:541.
[14]
Liu G H, Xu J L, Wang K Y . Nano Energy, 2017,41:269.
[15]
Huang L, Pei J X, Jiang H F, Hu X J . Desalination, 2018,442:1.
[16]
Yi L C, Ci S Q, Luo S L, Shao P, Hou Y, Wen Z H . Nano Energy, 2017,41:600.
[17]
徐步锋(Xu B F) . 青岛科技大学硕士论文(Master Dissertation of Qingdao University of Science and Technology), 2014.
[18]
Furube A ,Hashimoto S. NPG Asia Mater, 2017,9:454.
[19]
段慧玲(Duan H L), 宣益民(Xuan Y M), 李强(Li Q) . 科学通报(Chinese Science Bulletin), 2015,60:2378.
[20]
Wang C ,Astruc D. Chem. Soc. Rev, 2014,43:7188.
[21]
Chen X, Chen Y, Yan M, Qiu M , ACS Nano, 2012. 6:2550.
[22]
王金凤(Wang J F) . 西北师范大学硕士论文(Master Dissertation of Northwest Normal University), 2011.
[23]
Guo A K, Ming X, Fu Y, Wang G ,Wang X B. ACS Appl. Mater. Inter, 2017,9:29958.
[24]
蒋茜(Jiang Q). . 青岛科技大学硕士论文(Master Dissertation of Qingdao University of Science and Technology), 2017.
[25]
Wu Y, Zhou L P, Du X Z ,Yang Y P. Int. J. Heat Mass Tran., 2015,82:545.
[26]
陈星星(Chen X X) . 浙江大学博士论文Doctoral Dissertation of Zhejiang University), 2016.
[27]
曹韫真(Cao Y Z), 胡行方(Hu X F) . 太阳能学报(Acta Energiae Solaris Sinica), 2000,21:279.
[28]
谢光明(Xie G M), 李金许(Li J X), 高汉三(Gao H S), 尹万里(Yin W L) . 北京科技大学学报(Chinese Journal of Engineering), 2000,22:59.
[29]
王艳 . 陕西科技大学硕士论文(Master Dissertation of Shaanxi University of Science and Technology,2010.
[30]
华振涛 . 青岛科技大学硕士论文(ster Dissertation of Qingdao University of Science and Technology), 2017.
[31]
张誉心(Zhang Y X). . 东华大学硕士论文(Master Dissertation of Donghua University), 2015.
[32]
钱秋萍 . 中国人民大学硕士论文(Master Dissertation of Renmin University of China), 2014.
[33]
Wang P . Environ. Sci. Nano, 2018,5:1078.
[34]
金绪刚(Jin X G), 黄承亚(Huang C Y), 龚克成(Gong K C) . 半导体光电(Semiconductor Optoelectronics), 1997,18:61.
[35]
耿建新(Geng J X), 肖林红(Xiao L H), 李慧(Li H), 成春贵(Cheng C G) . 影像科学与光化学(Imaging Science and Photochemistry), 2017,35:464.
[36]
杨晓慧(Yang X H) . 西安联合大学学报(Journal of Xi’an United University), 1999,2:58.
[37]
洪鹄(Hong H), 黄兆和(Huang Z H), 柴正祺(Chai Z Q), 张沅珒(Zhang Y J) . 大学化学(University Chemistry), 2017,32:84.
[38]
白小娟(Bai X J) . 清华大学博士论文(Doctoral Dissertation of Tsinghua University), 2014.
[39]
贾晗钰(Jia H Y), 王亚培(Wang Y P) . 化学通报(Chemistry), 2017,80:123.
[40]
Saive R, Atwater H A . Opt. Express, 2018,26:275.
[41]
Wang M C, Ge D H, Wang J J, Jiao J W . ECS trans., 2013,53:37.
[42]
Wang Y C, Wang C Z, Song X J, Megarajan S K, Jiang H Q . J. Mater. Chem. A, 2018,6:963.
[43]
Shi Y S, Li R Y, Shi L, Ahmed E, Jin Y ,Wang P. Adv. Sustainable. Syst, 2018,2:1700145.
[44]
Astafyeva L G, Pustovalov V K, Fritzsche W. Nano-Struct . Nano-Objects, 2017,12:57.
[45]
陈晓亮(Chen X L) . 东华大学硕士论文(Master Dissertation of Donghua University), 2016.
[46]
Chen H C, Chen Y R, Yang K H, Yang C P, Tung K L, Lee M J, Shi J H, Liu Y C . Desalination, 2018,436:91.
[47]
Guo A K, Fu Y, Wang G ,Wang X B . RSC Adv, 2017,7:4815.
[48]
张丽莎(Zhang L S), 胡俊青(Hu J Q), 陈志钢(Chen Z G) . 材料导报(Materials Review), 2012,26:5.
[49]
陈楠(Chen N) . 青岛科技大学硕士论文(Master Dissertation of Qingdao University of Science and Technology), 2017.
[50]
Sharma B, Rabinal M K J . Alloys Compd., 2017,690:57. https://linkinghub.elsevier.com/retrieve/pii/S0925838816323659

doi: 10.1016/j.jallcom.2016.07.330     URL    
[51]
陈梅洁(Chen M J), 唐天琪(Tang T Q), 刘子玉(Liu Z Y), 何玉荣(He Y R) . 中国科学院大学学报(Journal of University of Chinese Academy Of Sciences), 2018,35:222.
[52]
Liu G H, Cao H, Xu J L . Sol. Energy, 2018,170:184.
[53]
Chang C, Yang C, Liu Y M, Tao P, Song C Y, Shang W, Wu J B ,Deng T. ACS Appl. Mater. Inter, 2016,8:23412.
[54]
Knight M W, King N S, Liu L F, Everitt H O, Nordlander P, Halas N J . ACS Nano, 2014,8:834.
[55]
Zhou L, Tan Y L, Wang J Y, Xu W C, Yuan Y, Cai W S, Zhu S N, Zhu J . Nat. Photonics, 2016,10:393.
[56]
Granqvist C G, Niklasson G A J . Appl. Phys., 1978,49:3512. http://aip.scitation.org/doi/10.1063/1.325263

doi: 10.1063/1.325263     URL    
[57]
Niklasson G A J . Appl. Phys., 1979,50:5500.
[58]
John S K, John D, Bijoy N, Chathanathodi R ,Anappara A A. Appl. Phys. Lett, 2017,111:033901.
[59]
Ren H Y, Tang M, Guan B L, Wang K X, Yang J W, Wang F F, Wang M Z, Shan J Y, Chen Z L, Wei D, Peng H L ,Liu Z F. Adv. Mater, 2017,29:1702590.
[60]
Xue G B, Liu K, Chen Q, Yang P H, Li J, Ding T P, Duan J J, Qi B ,Zhou J. ACS Appl. Mater. Inter, 2017,9:15052.
[61]
Liu P F, Miao L, Deng Z Y, Zhou J H, Su H, Sun L X, Tanemura S, Cao W J, Jiang F M, Zhao L D . Mater. Today Energy, 2018,8:166.
[62]
Zhu L L, Gao M M NuoPeh C K, Wang X Q, Ho G W. Adv. Energ. Mater., 2018,8:1702149.
[63]
Ghasemi H, Ni G, Marconnet A M, Loomis J, Yerci S, Miljkovic N, Chen G . Nat. Commun 2014,5:4449.
[64]
Zhang L, Chen L L, Liu J, Fang X M, Zhang Z G . Renew. Energy, 2016,99:888.
[65]
Goh P S, Ismail A F . Desalination, 2015,356:115.
[66]
Fu Y, Wang G, Mei T, Li J H, Wang J Y ,Wang X B. ACS Sustainable Chem. Eng., 2017,5:4665.
[67]
梁宇(Liang Y), 顾鹏程(Gu C P), 姚文(Yao W), 于淑君(Yu S J), 王建(Wang J), 王祥科(Wang X K) . 化学进展(Progress in Chemistry), 2017,29:1062.
[68]
Wang Y M, Tang B T ,Zhang S F. Adv. Funct. Mater, 2014,23:4354.
[69]
Hordy N, Rabilloud D, Meunier J L, Coulombe S . Sol. Energy, 2014,105:82.
[70]
Aghigh A, Alizadeh V, Wong H Y, Islam M S, Amin N, Zaman M . Desalination, 2015,365:389.
[71]
Zhang P P, Li J, Lv L X, Zhao Y, Qu L T . ACS Nano, 2017,11:5087.
[72]
Ito Y, Tanabe Y, Han J H, Fujita T, Tanigaki K ,Chen M W. Adv. Mater, 2015,27:4302.
[73]
Surwade S P, Smirnov S N, Vlassiouk I V, Unocic R R, Veith G M, Dai S ,Mahurin S M. Nat. Nanotechnol, 2015,10:459.
[74]
Kazemi A S, Abdi Y, Eslami J, Das R . Desalination, 2019,451:148.
[75]
Zhang J, Tang Y L, Hu G, Gao B L, Gan Z X ,Chu P K. Appl. Phys. Lett, 2017,111:013904.
[76]
Cui L F, Zhang P P, Xiao Y K, Liang Y, Liang H X, Cheng Z H ,Qu L T. Adv. Mater, 2018,30:1706805.
[77]
尚蒙娅(Shang M Y) . 中国科学技术大学博士论文(Doctoral Dissertation of University of Science and Technology of China), 2018.
[78]
徐磊(Xu L), 夏海平(Xia H P), 胡敏杰(Hu M J) . 光学学报(Acta Optica Sinica), 2013,33:159.
[79]
Zhu X L, Zhang Y J, Huang H Q, Zhang H J, Hou L, Zhang Z Z J . Drug. Target., 2017,25:425. https://www.ncbi.nlm.nih.gov/pubmed/27899044

doi: 10.1080/1061186X.2016.1266651     URL     pmid: 27899044
[80]
Tan L J, Wu Z Y, Wang X J, Sun J. RSC Adv ., 2015,5:35317.
[81]
Wang S, Riedinger A, Li H B, Fu C H, Liu H Y, Li L L, Liu T L, Tan L F, Barthel M J, Pugliese G, De Donato F, D'Abbusco M S, Meng X W, Manna L, Meng H, Pellegrino T . ACS Nano, 2015,9:1788.
[82]
Huang X, Zhang W, Guan G, Song G, Zou R ,Hu J. Acc. Chem. Res, 2017,50:2529.
[83]
Feng F, Guo H, Li D, Wu C, Wu J, Zhang W, Fan S, Yang Y, Wu X, Yang J, Ye B, Xie Y . ACS Nano, 2015,9:1683.
[84]
Xue C R, Hu S L, Chang Q, Li N, Wang Y Z, Liu W, Yang J L J . Mater. Sci., 2018,53:9742.
[85]
Fang Z X, Jiao S H, Kang Y T, Pang G S, Feng S H . Chemistry Open, 2017,6:261.
[86]
Zhou H W, Shi Y T, Dong Q S, Lin J, Wang A Q, Ma T L J . Phys. Chem., 2014,118:20100.
[87]
Shi Y S, Li R Y, Jin Y, Zhuo S F, Shi L, Chang J, Hong Seunghyun, Ng K C, Wang P . Joule, 2018,2:1171.
[88]
王兆洁(Wang Z J), 余诺(Yu N), 孟周琪(Meng Z Q), 刘子潇(Liu Z X), 胡俊青(Hu J Q), 陈志钢(Chen Z G) . 中国材料进展(Materials China), 2017,36:921.
[89]
崔倩玲(Cui Q L), 叶荣琴(Ye R Q), 李立东(Li L D) . 影像科学与光化学(Imaging Science and Photochemistry), 2017,35:429.
[90]
Yan Y P, Yang Q, Wang J, Jin H Y, Wang J, Yang H, Zhou Z G, Tian Q W, Yang S P . J. Mater. Chem. , 2017,5:382.
[91]
张红卫(Zhang H W), 孔斌(Kong B), 方时超(Fang S C), 张晨(Zhang C), 周治国(Zhou Z G), 杨仕平(Yang S P) . 上海师范大学学报(Journal of Shanghai Normal University), 2013,42:537.
[92]
王志雄(Wang Z X), 胡祥龙(Hu X L) . 激光生物学报(Acta Laser Biology Sinica), 2017,26:523.
[93]
宋国胜(Song G S) . 东华大学博士论文(Doctoral Dissertation of Donghua University), 2014.
[94]
王诗卉(Wang S H) . 厦门大学硕士论文(Master Dissertation of Xiamen University), 2016.
[95]
Cao Y Y, Dou J H, Zhao N J, Zhang S M, Zheng Y Q, Zhang J P, Wang J Y, Pei J ,Wang Y P. Chem. Mater, 2017,29:718.
[96]
郭亮(Guo L), 葛介超(Ge J C) . 影像科学与光化学(Imaging Science and Photochemistry), 2017,35:445.
[97]
孙阳阳(Sun Y Y), 张鸿雁(Zhang H Y), 周建华(Zhou J H), 华京君(Hua J J) . 化工新型材料(New Chemical Materials), 2014,42:30.
[98]
Fu Y, Mei T, Wang G, Guo A K, Dai G C, Wang S, Wang J Y, Li J H ,Wang B. Appl. Therm. Eng, 2017,114:961.
[99]
Yang Y B, Yang X D, Fu L N, Zou M C, Cao A Y, Du Y P, Yuan Q ,Yan C H. ACS Energy Lett, 2018,3:1165.
[100]
Shi L, He Y R, Huang Y M ,Jiang B C. Energy Convers. Manage., 2017,149:401.
[101]
Attia Y A ,Mohamed Y M A, Altalhi T A . Desalin. Water Treat., 2016,57:26014.
[102]
Jin Y, Chang J, Shi Y, Shi L, Hong S H, Wang P . J. Mater. Chem. A, 2018,6:7942.
[103]
Zhang Q, Xiao X F, Wang G, Ming X, Liu X H, Wang H, Yang H J, Xu W L, Wang X B . J. Mater. Chem. A, 2018,6:17212.
[104]
Wang G, Fu Y, Guo A K, Mei T, Wang J Y, Li J H ,Wang X B. Chem. Mater, 2017. 29:5629.
[105]
Shi L, Wang Y C, Zhang L B, Wang P . J. Mater. Chem. A, 2017,5:16212.
[106]
Zhou X Y, Zhao F, Guo Y H, Zhang Y ,Yu G H. Energy Environ. Sci., 2018,11:1985.
[107]
Wang Y C, Zhang L Bin ,Wang P. ACS Sustainable. Chem. Eng, 2016,4:1223.
[108]
Yang X D, Yang Y B, Fu L N, Zou M C, Li Z H, Cao A Y ,Yuan Q. Adv. Funct. Mater, 2018,28:1704505.
[109]
Liu K K, Jiang Q S, Tadepalli S, Raliya R, Biswas P, Naik R R ,Singamaneni S. ACS Appl. Mater. Inter, 2017,9:7675.
[110]
Li Y, Gao T, Yang Z, Chen C, Luo W, Song J, Hitz E, Jia C, Zhou Y, Liu B, Yang B, Hu L . Adv. Mater 2017,29:1700981.
[111]
Shang M Y, Li N, Zhang S D, Zhao T T, Zhang C, Liu C, Li H F ,Wang Z Y. ACS Appl. Energy Mater, 2018,1:56.
[112]
Zhao F, Yang R G, Qu L T ,Yu G H. Nat. Nanotechnol, 2018,13:489.
[113]
Okuhara Y, Yokoe D, Kato T, Suda S, Takata M, Noritake K ,Sato A. Sol. Energy Mater. Sol. Cells, 2017,161:240.
[114]
Gao M M ,Connor P K N, Ho G W . Energy Environ. Sci., 2016,9:3151.
[115]
Zeng W X, Suo L L, Zhang C Y, Wu D X, Zhu H T J . Taiwan Inst. Chem. Eng., 2018.
[116]
汪晨丰(Wang C F) . 西安工业大学硕士论文(Master Dissertation of Xi’an Technological University), 2014.
[117]
张霖 . 合肥工业大学硕士论文(Master Dissertation of Hefei University of Technology), 2014.
[118]
Bilokur M, Gentle A, Arnold M D, Cortie M B, Smith G B . Sol. RRL, 2017,1:1700092.
[119]
Paul P, Chakraborty P, Das T, Nafday D, Saha-Dasgupta T . Phys. Rev. B, 2017,96:035435.
[120]
Srimuk P, Halim J, Lee J, Tao Q Z, Rosen J ,Presser V . ACS Sustainable. Chem. Eng, 2018,6:3739.
[121]
Liu G Z, Shen J, Liu Q, Liu G P, Xiong J, Yang J, Jin W Q J . Membr. Sci., 2018,548:548.
[122]
Sun Y J, Chen D S, Liang Z Q . Mater. Today Energy, 2017,5:22.
[123]
Liu G Y, Zou J H, Tang Q Y, Yang X Y, Zhang Y W, Zhang Q, Huang W, Chen P, Shao J J, Dong X C . ACS Appl. Mater. Inter., 2017,9:40077.
[124]
Yang H B, Dai J J, Liu X, Lin Y, Wang J J, Wang L ,Wang F. Mater. Chem. Phys, 2017,200:179.
[125]
Shahzad F, Alhabeb M, Hatter C B, Anasori B, Hong S M, Koo C M, Gogotsi Y . Science, 2016,353:1137.
[126]
Ling Z, Ren C E, Zhao M Q, Yang J, Giammarco J M, Qiu J S, Barsoum M W, Gogotsi Y . PNAS, 2014,111:16676.
[127]
Liu Y M, Chen J W, Guo D W, Cao M Y ,Jiang L. ACS Appl. Mater. Inter, 2015,7:1364.
[128]
Liu M K, Du Y F, Miao Y E, Ding Q W, He S X, Tjiu W W, Pan J S, Liu T X . Nanoscale, 2015,7:1037.
[129]
Mokhtari H, Ahmadisedigh H, Ebrahimi I . Desalination, 2016,377:108.
[130]
Wang X Z, He Y R, Liu X, Shi L, Zhu J Q . Sol. Energy, 2017,157:35.
[131]
Yao J D, Zheng Z Q, Yang G W . Nanoscale, 2018,10:2876.
[132]
Li Z J, Xing Y C, Fan X Y, Lin L G, Meng A, Li Q D . Desalination, 2018,443:130.
[133]
Shi Y, Zhang C L, Li R Y, Zhuo S F, Jin Y, Shi L, Hong S, Chang J, Ong C ,Wang P. Environ. Sci. Technol, 2018,52:11822.
[1] 郭琪瑶, 段加龙, 赵媛媛, 周青伟, 唐群委. 混合能量采集太阳能电池―从原理到应用[J]. 化学进展, 2023, 35(2): 318-329.
[2] 张德善, 佟振合, 吴骊珠. 人工光合作用[J]. 化学进展, 2022, 34(7): 1590-1599.
[3] 曾毅, 任永生, 马文会, 陈辉, 詹曙, 曹静. 冶金法生产太阳能级硅的除硼方法、技术及工艺[J]. 化学进展, 2022, 34(4): 926-949.
[4] 薛朝鲁门, 刘宛茹, 白图雅, 韩明梅, 莎仁, 詹传郎. 非富勒烯受体DA'D型稠环单元的结构修饰及电池性能研究[J]. 化学进展, 2022, 34(2): 447-459.
[5] 杜宇轩, 江涛, 常美佳, 戎豪杰, 高欢欢, 尚玉. 基于非稠环电子受体的有机太阳能电池材料与器件[J]. 化学进展, 2022, 34(12): 2715-2728.
[6] 吴明明, 林凯歌, 阿依登古丽·木合亚提, 陈诚. 超浸润光热材料的构筑及其多功能应用研究[J]. 化学进展, 2022, 34(10): 2302-2315.
[7] 杨英, 马书鹏, 罗媛, 林飞宇, 朱刘, 郭学益. 多维CsPbX3无机钙钛矿材料的制备及其在太阳能电池中的应用[J]. 化学进展, 2021, 33(5): 779-801.
[8] 杨英, 罗媛, 马书鹏, 朱从潭, 朱刘, 郭学益. 钙钛矿太阳能电池电子传输层的制备及应用[J]. 化学进展, 2021, 33(2): 281-302.
[9] 徐翔, 李坤, 魏擎亚, 袁俊, 邹应萍. 基于非富勒烯小分子受体Y6的有机太阳能电池[J]. 化学进展, 2021, 33(2): 165-178.
[10] 徐佑森, 张振, 唐彪, 周国富. 基于Ti3C2-MXene的太阳能界面水汽转换[J]. 化学进展, 2021, 33(11): 2033-2055.
[11] 谭莎, 马建中, 宗延. 聚(3,4-乙烯二氧噻吩)∶聚苯乙烯磺酸/无机纳米复合材料的制备及应用[J]. 化学进展, 2021, 33(10): 1841-1855.
[12] 雷一帆, 雷圣宾, 朴玲钰. 光催化氧气还原制备H2O2[J]. 化学进展, 2021, 33(1): 66-77.
[13] 周亿, 胡晶晶, 孟凡宁, 刘彩云, 高立国, 马廷丽. 2D钙钛矿太阳能电池的能带调控[J]. 化学进展, 2020, 32(7): 966-977.
[14] 孟凡宁, 刘彩云, 高立国, 马廷丽. 界面修饰策略在钙钛矿太阳能电池中的应用[J]. 化学进展, 2020, 32(6): 817-835.
[15] 马晓辉, 杨立群, 郑士建, 戴其林, 陈聪, 宋宏伟. 全无机钙钛矿太阳电池: 现状与未来[J]. 化学进展, 2020, 32(10): 1608-1632.