English
新闻公告
More
化学进展 2018, Vol. 30 Issue (11): 1646-1659 DOI: 10.7536/PC180109 前一篇   后一篇

• 综述 •

二维硫化钼的溶液法制备及其复合材料在光、电催化领域的应用

唐美瑶1,2, 王岩岩1,2*, 申赫3,4, 车广波1,3*   

  1. 1. 吉林师范大学环境友好材料制备与应用教育部重点实验室 长春 130103;
    2. 吉林师范大学化学学院 四平 136000;
    3. 吉林师范大学功能材料物理与化学教育部重点实验室 长春 130103;
    4. 吉林师范大学物理学院 四平 136000
  • 收稿日期:2018-01-14 修回日期:2018-05-17 出版日期:2018-11-15 发布日期:2018-08-17
  • 通讯作者: 王岩岩,e-mail:wangyanyan.24@jlnu.edu.cn;车广波,e-mail:guangboche@jlnu.edu.cn E-mail:wangyanyan.24@jlnu.edu.cn;guangboche@jlnu.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.21576112,61705078,61704065,11504132)和吉林省科技厅发展计划(No.20180623042TC,20180520179JH)资助

Solution-Based Preparation Techniques for Two-Dimensional Molybdenum Sulfide Nanosheet and Application of Its Composite Materials in Photocatalysis and Electrocatalysis

Meiyao Tang1,2, Yanyan Wang1,2*, He Shen3,4, Guangbo Che1,3*   

  1. 1. Key Laboratory of Preparation and Application of Environmental Friendly Materials, Ministry of Education, Jilin Normal University, Changchun 130103, China;
    2. College of Chemistry, Jilin Normal University, Siping 136000, China;
    3. Key Laboratory of Functional Materials Physics and Chemistry, Ministry of Education, Jilin Normal University, Changchun 130103, China;
    4. College of Physics, Jilin Normal University, Siping 136000, China
  • Received:2018-01-14 Revised:2018-05-17 Online:2018-11-15 Published:2018-08-17
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No.21576112,61705078,61704065,11504132) and the Natural Science Foundation Project of Jilin Province (No.20180623042TC, 20180520179JH).
作为二维(2D)过渡金属硫族化合物(TMDs)的成员之一,MoS2因其独特的物理化学性质及在自然界中丰富的含量成为目前研究最广泛的一种半导体。凭借超薄的层状结构和可调控的禁带宽度,单层和多层的二维MoS2纳米材料在众多研究领域都备受关注。基于溶液法的合成工艺(如超声辅助液相剥离和湿化学合成法)有望实现大规模、高产量地制备二维MoS2纳米材料,更重要的是,基于溶液法合成的二维MoS2纳米材料便于作为模板或者载体来制备功能性复合纳米材料,有利于进一步提升其在相关应用中的性能。本文重点介绍了基于溶液制备二维MoS2纳米材料的各种合成方法,同时特别关注了溶液法制备的二维MoS2复合纳米材料及其在光、电催化方面的应用,并展望了溶液法合成二维MoS2及其复合材料的应用前景和挑战。
As a member of two-dimensional (2D) transition metal chalcogenide compounds (TMDs), molybdenum sulfide (MoS2) has become one of the most widely studied semiconductors because of its inherent unique physical and chemical properties as well as its abundance in nature. Due to special lamellar structure and adjustable band gap, 2D MoS2 have received considerable attention in the fields of catalysis, optoelectronic devices, sensing and energy storage and conversion. Solution-based techniques for preparation of 2D MoS2 nanosheet,such as liquid phase exfoliation methods and wet chemical synthesis methods,are promising for large-scale and high-yield preparation. More importantly, 2D MoS2 nanosheets obtained by solution-based method can also be used as templates or carriers to fabricate functional composites to further enhance their performance in related applications. In this review, the recent progress of solution-processed MoS2 nanosheets is presented, with the emphasis on their versatile synthetic strategies, hybridization and their application in photocatalysis and electrocatalysis. Finally, the challenges and opportunities in this research area are proposed.
Contents
1 Introduction
2 Solution-based techniques for preparation of 2D MoS2 nanosheets
2.1 Liquid phase exfoliation method
2.2 Wet chemical synthesis methods
3 2D MoS2 nanosheet-based composites
3.1 Composites of 2D MoS2 nanosheets and carbon materials
3.2 Composites of 2D MoS2 nanosheets and metals or metal oxides
3.3 Composites of 2D MoS2 nanosheets and organic or bio-materials
3.4 Hybrids of 2D MoS2 nanosheets and other functional materials
4 Applications of 2D MoS2 nanosheet-based composites
4.1 Photocatalysis
4.2 Electrocatalysis
5 Conclusion

中图分类号: 

()
[1] Tan C L, Liu Z D, Huang W, Zhang H. Chem. Soc. Rev., 2015, 44:2615.
[2] Huang X, Tan C, Yin Z, Zhang H. Adv. Mater., 2014, 26:2185.
[3] Chen Y, Tan C, Zhang H, Wang L. Chem. Soc. Rev., 2015, 44:2681.
[4] Xu M, Liang T, Shi M H. Chem. Soc. Rev., 2013, 113:3766.
[5] Zhang H. ACS Nano, 2015, 9:9451.
[6] Tan C, Zhang H. J. Am. Chem. Soc., 2015, 137:12162.
[7] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S. Nature Nanotech., 2012, 7:699.
[8] Chhowalla M, Shin H S, Eda G, Li L J, Loh K P, Zhang H. Nature Nanotech., 2013, 5:263.
[9] Nicolosi V, Chhowalla M, Kanatzidis M G, Strano M S, Coleman J N. Science, 2013, 340:1226419.
[10] Tan C, Zhang H. Chem. Soc. Rev., 2015, 44:2713-2731.
[11] Zhang Y J, Onga M, Qin F, Sh W, Zak A, Tenne R, Smet J, Iwasa Y. Mater., 2018, 5(3):035002.
[12] Iqbal M Z, Qureshi N A, Hussain G. J. Magn. Magn. Mater., 2018, 457.
[13] Hu W, Yang J L. J. Mater. Chem., 2017, 5(47):12289.
[14] Noori Y J, Cao Y M, Roberts J, Woodhead C, Bernardo-Gavito R, Tovee P, Young R J. ACS Photonics, 2016, 3(12):2515.
[15] Mak K F, Lee C, Hone J, Shan J, Heinz T F. Phys. Rev. Lett., 2010, 105:4.
[16] Li H, Wu J, Yin Z, Zhang H. Acc. Chem. Res., 2014, 47:1067.
[17] Radisavljevic B, Radenovic A. Nature Nanotech., 2011, 6:147.
[18] Li H, Qi X, Wu J, Zeng Z, Wei J, Zhang H. ACS Nano, 2013, 7:2842.
[19] Splendiani A, Sun L, Zhang Y B, Li T S, Kim J, Chim C Y, Galli G, Wang F. Nano Lett., 2010, 10:1271.
[20] Li H, Lu G, Yin Z, He Q, Li H, Zhang Q, Zhang H. Small, 2012, 8:682.
[21] Wang X W, Wu P Y. ACS Appl. Mater. Inter., 2018, 135.
[22] Lin.X Y, Wang J. J. Mater. Sci-Mater. El., 2018, 29(6):4658.
[23] Baby M, Kumar K R. J. Mater. Sci-Mater. El., 2018, 29(6):4658.
[24] Wu T, Zhang H. Angew. Chem. Int. Edit., 2015, 54:4432.
[25] Yin Z, Li H, Li H, Jiang L, Shi Y, Sun Y, Lu G, Zhang Q, Chen X, Zhang H. ACS Nano, 2012, 6:74.
[26] Lopez-Sanchez O, Lembke D, Kayci M. Radenovic A, Kis A. Nature Nanotech., 2013, 8:497.
[27] Liu J, Zeng Z, Cao X, Lu G, Wang L H, Fan Q L, Huang W, Zhang H. Small, 2012, 8:3517.
[28] Zeng Z, Yin Z, Huang X, Li H, He Q, Lu G, Boey F, Zhang H. Angew. Chem. Int. Edit., 2011, 50:11093.
[29] Li H, Yin Z, He Q, Li H, Huang X, Lu G, Fam D W H, Tok A I Y, Zhang Q, Zhang H. Small, 2012, 8:63.
[30] Zhu C, Zeng Z, Li H, Li F, Fan C, Zhang H. J. Am. Chem. Soc., 2013, 135:5998.
[31] Huang X, Zeng Z, Bao S, Wang M, Qi X, Fan Z, Zhang H. Nat. Commun., 2013, 4:1444.
[32] Yin Z, Chen B, Bosman M, Cao X, Chen J, Zheng B, Zhang H. Small, 2014, 10:3537.
[33] Yu Y F, Huang S Y, Li Y P, Steinmann S N, Yang W T, Cao L Y. Nano Lett., 2014, 14:553.
[34] Xie J F, Zhang J J, Li S, Grote F, Zhang X D, Zhang H, Wang R X, Lei Y, Pan B C, Xie Y. J. Am. Chem. Soc., 2013, 135:17881.
[35] Yan Y, Xia B, Xu Z, Wang X. ACS Catal., 2014, 4:1693.
[36] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. P. Natl. Acad. Sci. U.S.A., 2005, 102:10451.
[37] Zhao Y, Luo X, Li H, Zhang J, Araujo P T, Gan C K, Wu J, Zhang H, Quek S Y, Dresselhaus M S, Xiong Q H. Nano Lett., 2013, 13:1007.
[38] Zeng H L, Dai J F, Yao W, Xiao D, Cui X D. Nature Nanotech., 2012, 7:490.
[39] Lee H S, Min S W, Chang Y G, Park M K, Nam T, Kim H, Kim J H, Ryu S, Im S. Nano Lett., 2012, 12:3695.
[40] Liu K K, Zhang W J, Lee Y H, Lin Y C, Chang M T, Su C, Chang C S, Li H, Shi Y M, Zhang H, Lai C S, Li L J. Nano Lett., 2012, 12:1538.
[41] Zhan Y, Liu Z, Najmaei S, Ajayan P M, Lou J. Small, 2012, 8:966.
[42] Shi Y, Zhou W, Lu A Y, Fang W J, Lee Y H, Hsu A L, Kim S M, Kim K K, Yang H Y, Li L J, Idrobo J C, Kong J. Nano Lett., 2012, 12:2784.
[43] Eda G, Fujita T, Yamaguchi H, Voiry D, Chen M, Chhowalla M. ACS Nano, 2012, 6:7311.
[44] Eda G, Yamaguchi H, Voiry D, Fujita T, Chen M W, Chhowalla M. Nano Lett., 2011, 11:5111.
[45] Cunningham G, Lotya M, Cucinotta C S, Sanvito S, Bergin S D, Menzel R, Shaffer M S P, Coleman J N. ACS Nano, 2012, 6:3468.
[46] Zhang X, Lai Z, Tan C, Hua Z. Angew. Chem. Int. Edit., 2016, 47:8816.
[47] Matte H, Gomathi A, Manna A K, Late D J, Datta R, Pati S K, Rao C N R. Angew. Chem., 2010, 122:4153.
[48] Wang P, Sun H, Ji Y, Li W, Wang X. Adv. Mater., 2014, 26:964.
[49] Ciesielski A, Samori P. Chem. Soc. Rev., 2014, 43:381.
[50] Kim J, Kwon S, Cho D H, Kang B, Kwon H, Kim Y, Park S O, Jung G Y, Shin E, Kim W G, Lee H, Ryu G H, Choi M, Kim T H, Oh J, Park S, Kwak S K, Yoon S W, Byun D, Lee Z, C. Lee. Nat. Commun., 2015, 6:8294.
[51] Coleman J N, Lotya M, O'Neill A, Bergin S D, King P J, Khan U. et al. Science, 2011, 331:568.
[52] Cunningham G, Lotya M, Cucinotta C S, Sanvito S, Bergin S D, Menzel R. ACS Nano, 2012, 6:3468.
[53] Coleman J N, O'Neill M Lotya, Bergin A S D, King P J, Khan U, Young K, Gaucher A, De S, Smith R J, Shvets I V, Arora S K, Stanton G, Kim H Y, Lee K, Kim G T, Duesberg G S, Hallam T, Boland J J, Wang J J, Donegan J F, Grunlan J C, Moriarty G, Shmeliov A, Nicholls R J, Perkins J M, Grieveson E M, Theuwissen K, McComb D W, Nellist P D, Nicolosi V. Science, 2011, 331:568.
[54] O'Neill A, Khan U, Coleman J N. Chem. Mater.,2012, 24:2414.
[55] Sun X, Deng H, Zhu W, Zhi Y, Wu C Z, Xie Y. Angew. Chem. Int. Edit., 2016, 55:1704.
[56] Zhou K G, Mao N N, Wang H X, Peng Y, Zhang H L. Angew. Chem. Int. Edit., 2011, 50:10839.
[57] Jawaid A, Nepal D, Park K, Jespersen M, Qualley A, MirauP, DrummyL F, VaiaR A. Chem. Mater., 2016, 28(1):337.
[58] Grayfer E D, KozlovaM N, Fedorov V E. Adv. Colloid Interface Sci., 2017, 245:40.
[59] Zhou K G, Mao N N, Wang H X, Peng Y, Zhang H L. Angew Chem. Int. Ed., 2011, 50:10839.
[60] Shen J F, Wu J J, Wang M, Dong P, Xu J X, Li X G, Zhang X, Yuan J H, Wang X F, Ye M X, Robert V, Lou J, Ajayan P M. Small, 2016, 12(20):2741.
[61] Cunningham G, Lotya M, Cucinotta C S, Sanvito S, Bergin S D, Menzel R, Shaffer M S P, Coleman J N. ACS Nano, 2012, 6:3468.
[62] Zhang S L, Jung H, Huh J S, Yu J B, Yang W C. J. Am. Chem. Soc., 2014, 14:8518.
[63] Dong L, Lin S, Yang L, Zhang J, Yang C, Yang D, Lu H. Chem. Commun., 2014, 50:15936.
[64] Halim U, Zheng C R, Chen Y, Lin Z, Jiang S, Cheng R, Huang Y, Duan X. Nat. Commun., 2013, 4:2213.
[65] Smith R J, King P J, Lotya M, Wirtz C, Khan U, De S, O'Neill A, Duesberg G S, Grunlan J C, Moriarty G, Chen J, Wang J, Minett A I, Nicolosi V, Coleman J N. Adv. Mater., 2011, 23:3944.
[66] Mao B, Yuan Y, Shao Y, Yang B, Xiao Z, Huang J. J. Comput. Theor. Nanosci., 2014, 6, 685.
[67] Guardia L, Paredes J I, Rozada R, Villar-Rodil S. RSC Adv., 2014, 4:14115.
[68] Guan G, Zhang S, Liu S, Cai Y, Low M, Teng C P, Phang I Y, Cheng Y, Duei K L, Srinivasan B M, Zheng Y, Zhang Y W, Han M Y. J. Am. Chem. Soc., 2015, 137:6152.
[69] Yeon C, Yun S J, Yang J, Youn D H, Wook J. LimSmall, 2018, 14(2):1702747.
[70] Li J, Yu K, Tan Y, Fu H, Zhang Q, Cong W, Song C. Dalton Trans., 2014, 43:13136.
[71] Zheng J, Zhang H, Dong S, Liu Y, Tai Nai C, Suk Shin H, Young Jeong H, Liu B, Ping Loh K. Nat. Commum., 2014, 5, 2995.
[72] Niu L, Li K, Zhen H, Chui Y S, Zhang W, Yan F, Zheng Z. Small, 2014, 10:4651.
[73] Bang G S, Nam K W, Kim J Y, Shin J, Choi J W, Choi S Y. ACS Appl. Mater. Inter., 2014, 6:7084.
[74] Tan S M, Sofer Z, Luxa J, Pumera M. ACS Catalysis, 2016, 6(7):4594.
[75] Yao Y G, Tolentino L, Yang Z Z, Song X J, Zhang W, Chen Y S, Wong C P. Adv. Funct. Mater., 2013, 23:3577.
[76] Wu J Y, Lin M N, Wang L D, Zhang T. J. Nanomater, 2014, 852735.
[77] Yao Y, Lin Z, Li Z, Song X, Moon K S, Wong C P. J. Mater. Chem., 2012, 22:13494.
[78] Van Thanh D, Pan C C, Chu C W, Wei K H. RSC Adv., 2014, 4:15586.
[79] Yu L, Xu F, Xue B, Luo Z, Zhang Q, Bao B, Su S, Weng L, Huang W, Wang L. Nanoscale, 2014, 6:5762.
[80] Liu Y L, Zhong Q H, Chen K Q, Zhou J, Yang X, Chen W. J. Mater. Sci-Mater. El., 2017, 28(18):13633.
[81] Altavilla C, Sarno M, Ciambelli P. Chem. Mater., 2011, 23, 3879.
[82] Shi Y, Huang J K, Jin L, Hsu Y. T, Yu S F, Li L J, Yang H Y. Sci. Rep., 2013, 3:1839.
[83] Bessonov A A, Kirikova M N, Petukhov D I, Allen M, Ryh'nen T, Bailey M J A. Nature Mater., 2015, 14:199.
[84] Yun J M, Noh Y J, Lee C H, Na S I, Lee S, Jo S M, Joh H I, Kim D Y. Small, 2014, 10:2319.
[85] Wang L, Huang Z C, Wang R, Liu Y B, Qian C, Wu J, Liu J W. ACS Appl. Mater. Inter., 2018, 10:4409.
[86] Pang P F, Teng X, Chen M, Zhang Y L, Wang H B, Yang C, Yang W R, Barrow C J. Sensor. Actuat. B-Chem., 2018, 266:400.
[87] Burman D, Santra S, Pramanik P, Guha P K. Nanotechnology, 2018, 11:115504.
[88] Solanki S, Soni A, Pandey M K, Biradar A, Sumana G. ACS Appl. Mater. Inter., 2018, 10(3):3020.
[89] Li M J, Zheng Y N, Liang W B, Yuan, R, Chai Y Q. ACS Appl. Mater. Inter., 2017, 9(48):42111.
[90] Zhou W J, Yin Z Y, Du Y P, Huang X, Zeng Z Y, Fan Z X, Liu H, Wang J Y, Zhang H. Small, 2013, 9:140.
[91] Xu X, Fan Z, Ding S, Yu D, Du Y. Nanoscale, 2014, 6:5245.
[92] Chen Y, Song B, Tang X, Lu L, Xue J. Small, 2014, 10:1536.
[93] Chen Y, Lu J, Wen S, Lu L, Xue J. J. Am. Chem. Soc., 2014, 2:17857.
[94] Huang Y P, Miao Y E, Zhang L S, Tjiu W W, Pan J S. Nanoscale, 2014, 6:10673.
[95] Yin Y, Zhang X, Cai Y Q, Chen J Z, Wong J I, Tay Y Y, Chai J W, Wu J M T, Zeng Z Y, Zheng B, Yang H Y, Zhang H. Angew. Chem. Int. Edit., 2014, 53:12560.
[96] Qin P, Fang G, Ke W, Cheng F, Zheng Q, Wan J, Lei H, Zhao X. J. Am. Chem. Soc., 2014, 2:2742.
[97] Jeffery A, Nethravathi C, Rajamathi M. J. Phys. Chem. C, 2014, 118:1386.
[98] Chen B, MengY H, Sha J W, Zhong C, Hua W B, Zhao N Q. Nanoscale, 2018, 10(1):34.
[99] Rahmanian E, Malekfar R, Pumera M. Chem.-Eur. J., 2018, 24(1):18.
[100] Withers F, Yang H, Britnell L, Rooney A P, Lewis E, Felten A, Woods C R, Sanchez Roma-guera V, Georgiou T, Eckmann A, Kim Y J, Yeates S G, Haigh S J, Geim A K, Novoselov K S, Casiraghi C. Nano Lett., 2014, 14:3987.
[101] Chen J, Wu X J, Yin L, Li B, Hong X, Fan Z, Chen B, Xue C, Zhang H. Angew. Chem. Int. Edit., 2015, 54:1210.
[102] Peng W C, Li Y, Zhang F B, Zhang G L, Fan X B. Ind. Eng. Chem. Res., 2017, 56(16):4611.
[103] Zheng X, Xu J, Yan K, Wang H, Wang Z, Yang S. Chem. Mater., 2014, 26:2344.
[104] David L, Bhandavat R, Singh G. ACS Nano, 2014, 8:1759.
[105] Sun G, Liu J, Zhang X, Wang X, Li H, Yu Y, Huang W, Zhang H, Chen P. Angew. Chem., 2014, 53:12576.
[106] Zhou X, Wan L J, Guo Y G. Chem. Commun., 2013, 49:1838.
[107] Tai S Y, Liu C J, Chou S W, Chien F S S, Lin J Y, Lin T W. J. Mater. Chem., 2012, 22:24753.
[108] Chen Y, Sun H, Peng W. Nano Mater., 2017, 7(3):62.
[109] Park K S, Ni Z, Cote A P, Choi J Y, Huang R D, Uribe-Romo F J, Chae H K, O'Keeffe M, Yaghi O M.P. Natl. Acad. Sci. U.S.A.,2006, 103:10186.
[110] Lu G, Hupp J T. J. Am. Chem. Soc., 2010, 132:7832.
[111] Shen L, Luo M, Liu Y, Liang R, Jing F, Wu L. Appl. Catal. B, 2015, 166/167:445.
[112] Berntsen N, Gutjahr T, Loeffler L, Gomm J R, Seshadri R, Tremel W. Chem. Mater., 2003, 15:4498.
[113] Hou Y, Wen Z, Cui S, Guo X, Chen J. Adv. Mater., 2013, 25:6291.
[114] Xiang Q, Yu J, Jaroniec M. J. Am. Chem. Soc., 2012, 134:6575.
[115] Khan M, Yousaf A B, Chen M, Wei C S, Wu X, Huang N D, Qi Z M, Li L B. Nano Research, 2016, 9(3):837.
[116] Ravikumar C H, Nair G V, Muralikrishna S, Nagaraju D H, Balakrishna R G. Mater. Lett., 2018, 220:133.
[117] Ding S, Chen J S, Lou X W. Chemistry-Eur. J., 2011, 17:13142.
[118] Shi Y, Wang Y, Wong J I, Tan A Y S, Hsu C L, Li L J, Lu Y C, Yang H Y. Sci. Rep., 2013, 3:2169.
[119] Zhou F, Xin S, Liang H W, Song L T, Yu S H. Angew. Chem. Int. Edit., 2014, 53:11552.
[120] Wang C, Wan W, Huang Y, Chen J, Zhou H H, Zhang X X. Nanoscale, 2014, 6:5351.
[121] Weng Q, Wang X, Wang X, Zhang C, Jiang X, Bando Y, Golberg D. J. Mater. Chem. A, 2015, 3:3097.
[122] Voiry D, Goswami A, Kappera R, Silva C D C E, Kaplan D, Fujita T, Chen M, Asefa T, Chhowalla M. Nature Chem., 2015, 7:45.
[123] Chou S S, De M, Kim J, Byun S, Dykstra C, Yu J, Huang J, Dravid V P. J. Am. Chem. Soc., 2013, 135:4584.
[124] (a)Chang K, Chen W. ACS Nano, 2011, 5, 4720;(b)Backes C, Berner N C, Chen X, Lafargue P, LaPlace P, Freeley M, Duesberg G S, Coleman J N, McDonald A R. Angew. Chem. Int. Edit., 2015, 54:2638.
[125] Chang K, Mei Z W, Wang T, Kang Q, Ouyang S X, Ye J H. ACS Nano, 2014, 7:7078.
[126] Pan L, Liu Y T, Xie X M, Zhu X D. Chem.-Asian J., 2014, 9:1519.
[127] Sun G, Zhang X, Lin R, Yang J, Zhang H, Chen P. Angew. Chem. Int. Ed., 2015, 54, 4651.
[128] Sun H, Chao J, Zuo X, Su S, Liu X, Yuwen L, Fan C, Wang L. RSC Adv., 2014, 4:27625.
[129] Kim J, Byun S, Smith A J, Yu J. J. Phys. Chem.Lett., 2013, 4:1227.
[130] Bai S, Wang L, Chen X, Du J, Xiong Y. Nano Res., 2015, 8:175.
[131] Laursen A B, Kegnaes S, Dahl S. Energy & Environ. Sci., 2012, 5:5577.
[132] Ding Q, Meng F, English C R, Caban-Acevedo M, Shearer M J, Liang D, Daniel A S, Hamers R J, Jin S, J. Am. Chem. Soc., 2014, 136:8504.
[133] Zhang W, Xiao X, Li Y, Zeng X, Zheng L, Wan C, Appl. Surf. Sci., 2016, 389:496.
[134] Yang X, Huang H, Kubota M, He Z, Kobayashi N, Zhou X, Jin B, Luo J. Mater. Res. Bull., 2016, 76:79.
[135] Tan C, Qi X, Liu Z, Zhao F, Li H, Huang X, Shi L, Zheng B, Zhang X, Xie L, Tang Z, Huang W, Zhang H, J. Am. Chem. Soc., 2015, 137:1565.
[136] Schornbaum J, Winter B, Schießl S P, Gannott F, Katsukis G, Guldi D M, Spiecker E, Zaumseil J. Adv. Funct. Mater., 2014, 24:5798.
[137] Wang R T, Jin D D, Zhang Y B, Wang S J, Lang J W, Yan X B, Zhang L. J. Mater. Chem. A, 2017, 5(1):292.
[138] Lukowski M A, Daniel A S, Meng F, Forticaux A, Li L, Jin S. J. Am. Chem. Soc., 2013, 135:10274.
[139] Wang Z, Mi B. Environ. Sci. Technol., 2017, 51(15):8229.
[140] Xiang Q J, Yu J G, Jaroniec M. J. Am. Chem. Soc., 2012, 15:6575.
[141] Pramoda K, Kaur M, Gupta U, Rao C N R. Dalton Trans., 2016, 45(35):13810.
[142] Song H J, You S, Jia X H,.Jin Y. Ceram. Int., 2015, 41:13896.
[143] Yu Y, Huang S Y, Li Y, Steinmann S N, Yang W, Cao L L. Nano Lett., 2014, 14:553.
[144] Xie J F, Zhang H, Li S, Wang R X, Sun X, Zhou M, Zhou J F, Lou X W, Xie Y. Adv. Mater., 2013, 25:5807.
[145] Zhai C, Zhu M, Bin D, Ren F, Wang C, Yang P, Du Y. J. Power Sources, 2015, 275:483.
[146] Wang H, Lu Z, Xu S, Kong D, Cha J J, Zheng G, Hsu P C, Yan K, Bradshaw D, Prinz F B, Cui Y. P. Natl. Acad. Sci.U.S.A., 2013, 110:19701.
[147] Tang Q, Jiang D E, ACS Catal., 2016, 6:4953.
[148] Kibsgaard J, Chen Z, Reinecke B N, Jaramillo T F, Nature Mater., 2012, 11:963.
[149] Ye Z F, Yang J, Li B, Shi L, Ji H X, Song L, Xu H X. Small, 2017, 13(21):1700111.
[1] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[2] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[3] 李锋, 何清运, 李方, 唐小龙, 余长林. 光催化产过氧化氢材料[J]. 化学进展, 2023, 35(2): 330-349.
[4] 李婧, 朱伟钢, 胡文平. 基于有机复合材料的近红外和短波红外光探测器[J]. 化学进展, 2023, 35(1): 119-134.
[5] 王琦桐, 丁嘉乐, 赵丹莹, 张云鹤, 姜振华. 储能薄膜电容器介电高分子材料[J]. 化学进展, 2023, 35(1): 168-176.
[6] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[7] 范倩倩, 温璐, 马建中. 无铅卤系钙钛矿纳米晶:新一代光催化材料[J]. 化学进展, 2022, 34(8): 1809-1814.
[8] 夏博文, 朱斌, 刘静, 谌春林, 张建. 电催化氧化制备2,5-呋喃二甲酸[J]. 化学进展, 2022, 34(8): 1661-1677.
[9] 蒋峰景, 宋涵晨. 石墨基液流电池复合双极板[J]. 化学进展, 2022, 34(6): 1290-1297.
[10] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[11] 马晓清. 石墨炔在光催化及光电催化中的应用[J]. 化学进展, 2022, 34(5): 1042-1060.
[12] 李晓微, 张雷, 邢其鑫, 昝金宇, 周晋, 禚淑萍. 磁性NiFe2O4基复合材料的构筑及光催化应用[J]. 化学进展, 2022, 34(4): 950-962.
[13] 徐妍, 苑春刚. 纳米零价铁复合材料制备、稳定方法及其水处理应用[J]. 化学进展, 2022, 34(3): 717-742.
[14] 孙浩, 王超鹏, 尹君, 朱剑. 用于电催化析氧反应电极的制备策略[J]. 化学进展, 2022, 34(3): 519-532.
[15] 庞欣, 薛世翔, 周彤, 袁蝴蝶, 刘冲, 雷琬莹. 二维黑磷基纳米材料在光催化中的应用[J]. 化学进展, 2022, 34(3): 630-642.