English
新闻公告
More
化学进展 2016, Vol. 28 Issue (12): 1870-1879 DOI: 10.7536/PC160602 前一篇   后一篇

• 综述与评论 •

铝基材料水解制氢技术

赵冲, 徐芬*, 孙立贤*, 范明慧, 邹勇进, 褚海亮   

  1. 广西新能源材料结构与性能协同创新中心 广西信息材料重点实验室 桂林电子科技大学材料科学与工程学院 桂林 541004
  • 收稿日期:2016-06-01 修回日期:2016-11-01 出版日期:2016-12-25 发布日期:2016-12-23
  • 通讯作者: 徐芬,e-mail:xufen@guet.edu.cn;孙立贤,e-mail:sunlx@guet.edu.cn E-mail:xufen@guet.edu.cn;sunlx@guet.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.51361005,51671062,U1501242,51371060),广西材料科学与技术创新团队(No.2012GXNSFGA06002),广西自然科学基金项目(No.2014GXNSFAA118319,2014GXNAFDA118005)和广西信息材料重点实验室基金(No.161002-Z,161002-K,161003-K,151002-K)资助

Hydrogen Generation by Al-Based Materials Hydrolysis

Zhao Chong, Xu Fen*, Sun Lixian*, Fan Minghui, Zou Yongjin, Chu Hailiang   

  1. Guangxi Collaborative Innovation Center of Structure and Property for New Energy and Materials, Guangxi Key Laboratory of Information Materials, School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China
  • Received:2016-06-01 Revised:2016-11-01 Online:2016-12-25 Published:2016-12-23
  • Supported by:
    The work was supported by the NSFC (No. 51361005, 51671062, U1501242, 51371060), Guangxi Collaborative Innovation Centre of Structure and Property for New Energy and Materials (No. 2012GXNSFGA06002), Guangxi NSFC (No. 2014GXNSFAA118319, 2014GXNAFDA118005), and the Guangxi Key Laboratory of Information Materials (No. 161002-Z, 161002-K, 161003-K, 151002-K).
氢能作为一种高焓值的绿色能源在解决未来能源危机和环境污染中备受关注,而铝水反应在众多制氢途径中被认为是最具优势的方法之一。本文着重论述了近几年铝基材料水解制氢技术的研究进展。铝水制氢是一种很有发展前景的储存和运输氢能的方式,但Al表面致密的氧化层阻碍了铝水反应的进行,使其难以在常温常压情况下产生氢气。为充分开发利用氢能源,可采用添加碱、氢化物、金属氧化物、无机盐等方式,或将金属单质与Al通过烧结、熔炼、球磨等先进的技术手段进行复合,能够有效地活化Al,从而实现低环境温度、短诱导时间、快产氢速率、高转化率的铝水反应,为燃料电池电动汽车现场供氢。
Hydrogen as a clean renewable and environmentally friendly energy source with high calorific value is considered to be of great importance to overcome present problem of energy crisis and environmental pollution. Aluminum-water reaction is proved to be one of the most dominant methods among numerous hydrogen generation ways. The paper focuses on the research progress of the technology of hydrogen generation from the hydrolysis of aluminum based materials in recent years. Hydrogen generation in-situ by Al-water reaction is a promising hydrogen storage and transportation way. However, the dense oxide layer on the surface of Al particles hinders the reaction of aluminum with water, making it difficult to produce hydrogen at room temperature and standard atmospheric pressure. In order to fully explore and utilize hydrogen energy, a variety of additives (such as alkali, metal hydride, metallic oxide, inorganic salt, metal and so on) are used for preparing aluminum-based materials. Generally, the preparation methods of the materials include sintering, smelting, ball-milling and other advance techniques. Research results have demonstrated that the above methods are able to effectively activate Al and achieve the aluminum-water reaction at low ambient temperature with short induction time, fast hydrogen production rate and high conversion rate. It may provide H2 on board for fuel cells vehicles.

Contents
1 Introduction
2 Methods of hydrogen generation from aluminum hydrolysis
2.1 Al hydrolysis under alkali condition
2.2 Al-metal hydride composite hydrolysis
2.3 Al-metallic oxide composite hydrolysis
2.4 Al-inorganic salt composite hydrolysis
2.5 Al-metal alloy hydrolysis
3 Conclusion and outlook

中图分类号: 

()
[1] Sheindlin A E, Zhuk A Z. Herald Russ. Acad. Sci., 2010, 80:143.
[2] 周洁(Zhou J), 郑颖平(Zheng Y P), 谢吉虹(Xie J H). 化工时刊(Chemical IndustryTimes), 2007, 21(5):71.
[3] Wang H Z, Leung D Y C, Leung M K H, Ni M. Renew Sust. Energ. Rev., 2009, 13:845.
[4] 马广璐(Ma G L), 庄大为(Zhuang D W), 戴洪斌(Dai H B), 王平(Wang P). 化学进展(Progress in Chemistry), 2012, 24(4):650.
[5] 刘光明(Liu G M), 解东来(Xie D L). 电源技术(Power Source Technology), 2011, 35(1):109.
[6] 刘姝(Liu S), 范美强(Fan M Q), 李璐(Li L), 黄岳祥(Huang Y X), 陈达(Chen D), 舒康颖(Shu K Y). 电源技术(Power Source Technology), 2011, 35(3):334.
[7] Huang X, Gao T, Pan X, Wei D, Lv C, Qin L, Huang Y. J. Power Sources, 2013, 229:133.
[8] 万俊(Wan J). 华中科技大学硕士论文(Master Dissertation of Huazhong University of Science and Technology), 2012.
[9] Coursol P, Dufour G, Cote J, Chartrand P, Mackey P. Jom, 2012, 64:1326.
[10] Uehara K, Takeshita H, Kotaka H. J. Mater. Process Tech., 2002, 127:174.
[11] 王芳(Wang F), 刘光明(Liu G M), 解东来(Xie D L). 电源技术(Power Source Technology), 2012, 36(2):198.
[12] Ma G L, Dai H B, Zhuang D W, Xia H J, Wang P. Int. J. Hydrogen Energ., 2012, 37:5811.
[13] Soler L, Maria C A, Macanas J, Munoz M, Casado J. J. Power Sources, 2009, 192:21.
[14] Soler L, Maria C A, Macanas J, Munoz M, Casado J. Int. J. Hydrogen Energ., 2010, 35:1038.
[15] Soler L, Maria C A, Macanas J, Munoz M, Casado J. Int. J. Hydrogen Energ., 2009, 34:8511.
[16] Martinez S S, Sanchez L A, Gallegos A A A, Sebastian P J. Int.J. Hydrogen Energ., 2007, 32:3159.
[17] Liu Y, Wang X, Liu H, Dong Z, Li S, Ge H, Yan M. Energy, 2014, 72:421.
[18] Zhang H, Geerlings H, Lin J, Chin W S. Int. J. Hydrogen Energ., 2011, 36:7580.
[19] Liu Y, Wang X, Liu H, Dong Z, Li S, Ge H, Yan M. RSC Adv., 2015, 5:60460.
[20] Billur S, Farida L D, Michael H. Int. J. Hyrogen Energ., 2007, 32:1121.
[21] Choi Y J, Lu J, Sohn H Y, Fang Z Z. J. Phys. Chem. C, 2011, 115:6040.
[22] 兰晓芬(Lan X F). 辽宁师范大学硕士论文(Master Dissertation of Liaoning Normal University), 2012.
[23] Liu Y, Wang X, Liu H, Dong Z, Li S, Ge H, Yan M. Energy, 2015, 89:907.
[24] Liu Y, Wang X, Liu H, Dong Z, Li S, Ge H, Yan M. Energy, 2015, 84:714.
[25] 刘昊(Liu H), 徐芬(Xu F), 孙立贤(Sun L X), 曹忠(Cao Z), 周怀营(Zhou H Y). 高等学校化学学报(Chemical Journal of Chinese Universities), 2013, 34(8):1953.
[26] Shafirovich E, Diakov V, Varma A. Combust. Flame, 2006, 144:415.
[27] Wu T, Xu F, Sun L X, Cao Z, Chu H L, Sun Y J, Wang L, Chen P H, Chen J, Pang Y, Zou Y F, Qiu S J, Xiang C L, Zhang H Z. Int. J. Hydrogen Energ., 2014, 39:10392.
[28] 王爽(Wang S), 孙立贤(Sun L X). 电源技术(Power Source Technology), 2015, 39(5):925.
[29] Skrovan J, Troczynski T, Alfantazi A. Corrosion (Eds. Hansen D C, Alfantazi A, Gelling V J). Vancouver:ECS Trans., 2010. 157.
[30] Deng Z Y, Tang Y B, Zhu L L, Sakka Y, Ye J. Int. J. Hydrogen Energ., 2010, 35:9561.
[31] Gai W Z, Fang C S, Deng Z Y. Int. J. Energ. Res., 2014, 38:918.
[32] Gai W Z, Shi Y, Deng Z Y, Zhou J G. Int. J. Hydrogen Energ., 2015, 40:12057.
[33] Gai W Z, Liu W H, Deng Z Y, Zhou J G. Int. J. Hydrogen Energ., 2012, 37:13132.
[34] Skrovan J, Alfantazi A, Troczynski T. J. Appl. Electrochem., 2009, 39:1695.
[35] 孙洋(Sun Y), 谢佳琦(Xie J Q), 刘美佳(Liu M J), 周雯慧(Zhou W H), 李润东(Li R D). 可再生能源(Renewable Energy), 2014, 32(7):1038.
[36] 方银娥(Fang Y E). 沈阳航空航天大学硕士论文(Master Dissertation of Shenyang Aerospace University), 2011.
[37] Wang H, Lu J, Dong S J, Chang Y, Fu Y G, Luo P. Mater. Trans., 2014, 55:892.
[38] Chen X, Zhao Z, Hao M, Wang D. J. Power Sources, 2013, 222:188.
[39] Teng H T, Lee T Y, Chen Y K, Wang H W, Cao G. J. Power Sources, 2012, 219:16.
[40] Dupiano P, Stamatis D, Dreizin E L. Int. J. Hydrogen Energ., 2011, 36:4781.
[41] 贾艳艳(Jia Y Y), 沈洁(Shen J), 孟海霞(Meng H X), 柴玉俊(Chai Y J), 王宁(Wang N). 电源技术(Power Source Technology), 2013, 37(12):2138.
[42] Huang X N, Wu Z H, Cao K, Zeng W, Lv C J, Huang Y X. Materials for Energy Conversion and Storage (Eds. Zhang H). Shenzhen:Key Engineering Materials, 2012. 87.
[43] Niu F, Huang X, Gao T, Wang J, Qin L, Huang Y. Energy Technology, 2014, 2:593.
[44] Mahmoodi K, Alinejad B. Int. J. Hydrogen Energ., 2010, 35:5227.
[45] 朱勤标(Zhu Q B), 常鹰(Chang Y), 董仕节(Dong S J), 罗平(Luo P). 材料导报(Materials Review), 2014, 28(23):311.
[46] Gudic S, Smoljko I, Kliskic M. J. Alloys Compd., 2010, 505:54.
[47] Alinejad B, Mahmoodi K. Int. J. Hydrogen Energ., 2009, 34:7934.
[48] Czech E, Troczynski T. Int. J. Hydrogen Energ., 2010, 35:1029.
[49] Fan M Q, Sun L X, Xu F. Energy, 2010, 35:1333.
[50] Xu F, Sun L, Lan X, Chu H, Sun Y, Zhou H, Li F, Yang L, Si X, Zhang J, Walter S, Gabelica Z. Int. J. Hydrogen Energ., 2014, 39:5514.
[51] 黄霞妮(Huang X N). 中国计量学院硕士论文(Master Dissertation of China Jiliang University), 2013.
[52] Wang H H, Chang Y, Dong S J, Lei Z F, Zhu Q B, Luo P, Xie Z X. Int. J. Hydrogen Energ., 2013, 38:1236.
[53] Ilyukhina A V, Ilyukhin A S, Shkolnikov E I. Int. J. Hydrogen Energ., 2012, 37:16382.
[54] Ziebarth J T, Woodall J M, Kramer R A, Choi G. Int. J. Hydrogen Energ., 2011, 36:5271.
[55] Baniamerian M J, Moradi S E. J. Alloys Compd., 2011, 509:6307.
[56] Huang T, Gao Q, Liu D, Xu S, Guo C, Zou J, Wei C. Int. J. Hydrogen Energ., 2015, 40:2354.
[57] Jia Y Y, Shen J, Meng H X, Dong Y M, Chai Y J, Wang N. J. Alloys Compd., 2014, 588:259.
[58] 李洋(Li Y). 吉林大学硕士论文(Master Dissertation of Jilin University), 2015.
[59] 程凯(Cheng K). 燕山大学硕士论文(Master Dissertation of Yanshan University), 2014.
[60] Yoo J H, Yun K S, Kalubarme R S, Park C N, Park C J. Met. Mater. Int., 2014, 20:619.
[61] Wang N, Meng H X, Dong Y M, Jia Z L, Gao L J, Chai Y J. Int. J. Hydrogen Energ., 2014, 39:16936.
[62] Meng H X, Wang N, Dong Y M, Jia Z L, Gao L J, Chai Y J. J. Power Sources, 2014, 268:550.
[63] Wang Y, Zhou L T, Yuan H, Shen W H, Tang R, Fan M Q, Shu K Y. Int. J. Electrochem. Sci., 2013, 8:9764.
[64] Razavi S S, Szpunar J A. Int. J. Hydrogen Energ., 2013, 38:795.
[65] Fan M Q, Wang Y, Tian G L, Mei D S, Chen D, Shu K Y. Int. J. Hydrogen Energ., 2013, 38:10857.
[66] Zou M S, Guo X Y, Huang H T, Yang R J, Zhang P. J. Power Sources, 2012, 219:60.
[67] Huang X N, Lv C J, Wang Y, Shen H Y, Chen D, Huang Y X. Int. J. Hydrogen Energ., 2012, 37:7457.
[68] Fan M Q, Liu S, Sun W Q, Fei Y, Pan H, Shu K Y. Renewable Energy, 2012, 46:203.
[69] Fan M Q, Liu S, Sun L X, Xu F, Wang S, Zhang J, Mei D S, Huang F L, Zhang Q M. Int. J. Hydrogen Energ., 2012, 37:4571.
[70] 陈博(Chen B). 吉林大学硕士论文(Master Dissertation of Jilin University), 2013.
[71] 赵欣明(Zhao X M). 辽宁大学硕士论文(Master Dissertation of Liaoning University), 2012.
[72] Reboul M C, Gimenez P, Rameau J J. Corrosion Houston Tx, 1984, 40:366.
[73] 李振亚(Li Z Y), 易玲(Yi L), 刘稚蕙(Liu Z H), 杨林(Yang L), 苏景新(Su J X), 陈艳英(Chen Y Y). 电化学(Journal of Electrochemistry), 2001, 7(3):316.
[74] Kravchenko O V, Semenenko K N, Bulychev B M, Kalmykov K B. J. Alloys Compd., 2005, 397:58.
[75] Muntyan S P, Volodina G F, Grabko D Z, Zhitar V F. Surf. Eng. Appl. Electrochem., 2009, 45:347.
[76] Parmuzina A V, Kravchenko O V. Int. J. Hydrogen Energ., 2008, 33:3073.
[77] Parmuzina A V, Kravchenko O V, Bulychev B M, Shkol'nikov E I, Burlakova A G. Russ. Chem. Bull., 2009, 58:493.
[78] Hu X, Zhu G, Zhang Y, Wang Y, Gu M, Yang S, Song P, Li X, Fang H, Jiang G, Wang Z. Int. J. Hydrogen Energ., 2012, 37:11012.
[79] Wang W, Chen D M, Yang K. Int. J. Hydrogen Energ., 2010, 35:12011.
[80] Yuan B, Tan S, Liu J. Int. J. Hydrogen Energ., 2016, 41:1453.
[81] Yang W, Zhang T, Zhou J, Shi W, Liu J, Cen K. Energy, 2015, 88:537.
[82] Wang W, Chen W, Zhao X M, Chen D M, Yang K. Int. J. Hydrogen Energ., 2012, 37:18672.
[83] Liu S, Fan M Q, Chen D, Lv C J. Energy Sources, 2015, 37:356.
[84] 赵林(Zhao L). 南京理工大学硕士论文(Master Dissertation of Nanjing University of Science and Technology), 2012.
[85] 刘姝(Liu S). 中国计量学院硕士论文(Master Dissertation of China Jiliang University), 2012.
[86] Elitzur S, Rosenband V, Gany A. Int. J. Hydrogen Energ., 2014, 39:6328.
[87] Liu S, Wang L I, Yao J, Sun W Q, Fan M Q. T. Nonfer. Metal Soc, 2012, 22:1140.
[88] Liu S, Fan M Q, Wang C, Huang Y X, Chen D, Bai L Q, Shu K. Int. J. Hydrogen Energ., 2012, 37:1014.
[89] Liu J B, Tang L, Li C, Tang B H, Xiao X, Xing H W, Fan M Q. J. New Mat. Electr. Sys., 2012, 15:283.
[90] Chen X Y, Zhao Z W, Liu X H, Hao M M, Chen A L, Tang Z Y. J. Power Sources, 2014, 254:345.
[91] Ilyukhina A V, Kravchenko O V, Bulychev B M, Shkolnikov E I. Int. J. Hydrogen Energ., 2010, 35:1905.
[92] 崔海洋(Cui H Y), 卜建杰(Bu J J), 郑邯勇(Zheng H Y), 赵文忠(Zhao W Z), 陈支厦(Chen Z X). 推进技术(Journal of Propulsion Technology), 2013, 34(6):849.
[93] Fan M Q, Xu F, Sun L X. Int. J. Hydrogen Energ., 2007, 32:2809.
[94] Chen X, Zhao Z, Liu X, Hao M, Chen A, Tang Z. J. Power Sources, 2014, 254:345.
[95] 陈星宇(Chen X Y). 中南大学博士论文(Doctoral Dissertation of Central South University), 2010.
[96] Zhao Z, Chen X, Hao M. Energy, 2011, 36:2782.
[97] Jia Y, Shen J, Meng H, Dong Y, Chai Y, Wang N. J. Alloys Compd., 2014, 588:259.
[98] Liu J, Fei Y, Pan H, Fan M, Wang L, Yao J. J. Rare Earths, 2012, 30:548.
[99] Chai Y J, Dong Y M, Meng H X, Jia Y Y, Shen J, Huang Y M, Wang N. Energy, 2014, 68:204.
[100] Sun W Q, Fan M Q, Fei Y, Pan H, Wang L L, Yao J. Sci. World J., 2012, 2012:150973.
[101] Luo H, Liu J, Pu X, Liang J, Wang Z, Wang F, Zhang K, Peng Y, Xu B, Li J, Yu X. J. Am. Ceram. Soc., 2011, 94:3976.
[102] 罗辉(Luo H). 上海师范大学硕士论文(Master Dissertation of Shanghai Normal University), 2012.
[103] Fan M Q, Xu F, Sun L X, Zhao J N, Jiang T, Li W X. J. Alloys Compd., 2008, 460:125.
[104] Wang C, Liu Y, Liu H, Yang T, Chen X, Yang S, Liu X. Sci. Rep-UK, 2015, 5:17428.
[105] Lin M C, Uan J Y, Tsai T C. Int. J. Hydrogen Energ., 2012, 37:13731.
[106] Fan M Q, Wang Y, Tang R, Chen D, Liu W, Tian G L. Renew. Energ., 2013, 60:637.
[107] Yu M, Kim M, Yoon B, Oh S, Nam D H, Kwon H. Int. J. Hydrogen Energ., 2014, 39:19416.
[108] Yang Y, Gai W Z, Deng Z Y, Zhou J G. Int. J. Hydrogen Energ., 2014, 39:18734.
[1] 谢尹, 张立阳, 应佩晋, 王佳程, 孙宽, 李猛. 外场强化电解水析氢[J]. 化学进展, 2021, 33(9): 1571-1585.
[2] 丁朝, 杨维结, 霍开富, Leon Shaw. LiBH4储氢热力学和动力学调控[J]. 化学进展, 2021, 33(9): 1586-1597.
[3] 杨世迎, 刘俊琴, 李乾风, 李阳. 机械球磨改性零价铝的作用机制[J]. 化学进展, 2021, 33(10): 1741-1755.
[4] 彭立山, 魏子栋*. 高性能电解水电极催化材料的设计及产品工程[J]. 化学进展, 2018, 30(1): 14-28.
[5] 王诚, 王树博, 张剑波, 李建秋, 王建龙, 欧阳明高. 车用燃料电池耐久性研究[J]. 化学进展, 2015, 27(4): 424-435.
[6] 王诚, 王树博, 张剑波, 李建秋, 欧阳明高, 王建龙. 车用质子交换膜燃料电池材料部件[J]. 化学进展, 2015, 27(2/3): 310-320.
[7] 李雪, 张伊放, 齐卫宏, 曹晓武, 王渊, 李浩华. 纳米储氢合金[J]. 化学进展, 2013, 25(07): 1122-1130.
[8] 何非, 彭冉冉, 杨上峰. 质子型可逆固体氧化物电池的材料与反应机理[J]. 化学进展, 2011, 23(0203): 477-486.
[9] 王诚,毛宗强,陈荣华,王革华,谢晓峰. 小型燃料电池的研究现状与应用前景分析[J]. 化学进展, 2006, 18(01): 30-35.
阅读次数
全文


摘要

铝基材料水解制氢技术