English
新闻公告
More
化学进展 2016, Vol. 28 Issue (10): 1528-1540 DOI: 10.7536/PC160617 前一篇   后一篇

• 综述与评论 •

二维Z型光催化材料及其在环境净化和太阳能转化中的应用

张圆正, 谢利利, 周怡静, 殷立峰*   

  1. 北京师范大学环境学院 水环境模拟国家重点实验室 北京 100875
  • 收稿日期:2016-06-01 修回日期:2016-08-01 出版日期:2016-10-15 发布日期:2016-11-05
  • 通讯作者: 殷立峰 E-mail:lfyin@bnu.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.21207004),北京市自然科学基金(No.8142025),高等学校博士学科点专项科研基金资助课题(No.20120003120027)资助

2D Z-Scheme Photocatalyst and Its Application in Environmental Purification and Solar Energy Conversion

Zhang Yuanzheng, Xie Lili, Zhou Yijing, Yin Lifeng*   

  1. State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
  • Received:2016-06-01 Revised:2016-08-01 Online:2016-10-15 Published:2016-11-05
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21207004), Beijing Natural Science Foundation (No. 8142025) and the Specialized Research Fund for the Doctoral Program of Higher Education (No. 20120003120027).
光催化技术可将太阳能转化为可存储能源,还可直接利用太阳能分解污染物,是缓解能源紧张,净化环境的有效途径。Z型光催化体系可模拟光合作用过程,在可见光下具有较高的光能转化效率,成为近年来的研究热点,而碳化氮等二维纳米材料的发展进一步启发人们基于微观二维结构构建Z型光催化体系,以强化其光谱响应能力、载流子分离效率、氧化还原能力以及光蚀稳定性。本文综述了近年来二维Z型光催化材料在基础理论,合成方法方面的研究进展及其在环境和能源领域的应用情况,并对二维Z体系在光催化领域的研究前景进行了展望。
Photocatalysis, which not only converts solar energy into storable energy but also directly employs solar energy to decompose environmental pollutants, is one of the effective ways to alleviate the shortage of energy and remediate environment. The Z-scheme photocatalysts can simulate the natural photosynthesis process with high photocatalytic activity under visible light irradiation, becoming a research hotspot in recent years. The development of emerging carbonization nitrogen and graphene-like two-dimensional nanomaterials inspire people to build Z-scheme photocatalytic systems based on two dimensional nanostructure. By this means, the optical spectrum response, carriers separation capacity, redox potentials, and stability to resist light-etch of Z-scheme photocatalysts are reinforced. This paper reviews the recent progress in the study of two dimensional Z-scheme photocatalytic materials, introduces the preparation methods, reaction mechanisms and applications of two dimensional Z-scheme photocatalysts in the field of environment purification and solar energy conversion. Finally, the research prospects of two-dimensional Z-scheme materials in the field of photocatalysis are briefly proposed.

Contents
1 Introduction
2 Study on mechanism of two dimensional Z-scheme photocatalysis
2.1 Reaction mechanism of Z-scheme photocatalysis
2.2 Characteristics and functions of two dimensional Z-scheme photocatalyst
3 Novel two-dimensional visible light catalysts and its control synthesis
3.1 Graphite-phase carbon nitride (g-C3N4)
3.2 Sulfide
3.3 Bismuth based photocatalyst
4 Application of two dimensional Z-scheme visible light responsive photocatalyst in the field of pollutant control
4.1 Photocatalytic degradation of dyes
4.2 Photocatalytic degradation of phenols
4.3 Photocatalytic degradation of antibiotics
5 Application of two dimensional Z-scheme visible light responsive photocatalyst in the energy conversion
5.1 Photocatalytic hydrogen production
5.2 Photocatalytic reduction of CO2
6 Conclusion

中图分类号: 

()
[1] Simon T, Bouchonville N, Berr M J, Vaneski A, Adrovi D? A, Volbers D, Wyrwich R, Döblinger M, Susha A S, Rogach A L. Nat. Mater., 2014, 13:1013.
[2] Jack R S, Ayoko G A, Adebajo M O, Frost R L. Environ. Sci. Pollut. Res. Int., 2015, 22:7439.
[3] Huang D H, Yin L F, Niu J F. Environ. Sci. Technol., 2016,50:5857.
[4] 温福宇(Wen F Y), 杨金辉(Yang J H), 宗旭(Zong X), 马艺(Ma Y), 徐倩(Xu Q), 马保军(Ma B J), 李灿(Li C). 化学进展(Progress in Chemistry), 2009, 21:2285.
[5] 王会香(Wang H X), 姜东(Jiang D), 吴东(Wu D), 李德宝(Li D B), 孙予罕(Sun Y H). 化学进展(Progress in Chemistry), 2012, 24:2116.
[6] Low J X, Cao S W, Yu J G, Wageh S. Chem. Commun., 2014, 50:10768.
[7] Yin L F, Shen Z Y, Niu J F, Chen J, Duan Y P. Environ. Sci. Technol., 2010, 44:9117.
[8] Formal F L, Pendlebury S R, Cornuz M, Tilley S D, Grätzel M, Durrant J R. J. Am. Chem. Soc., 2014, 136:2564.
[9] Koski K J, Cui Y. ACS Nano, 2013, 7:3739.
[10] Selloni A. Nat. Mater., 2008, 7:613.
[11] Jiang J, Zhao K, Xiao X Y, Zhang L Z. J. Am. Chem. Soc., 2012, 134:4473.
[12] 管美丽(Guan M L). 中国科学技术大学博士论文(Doctoral Dissertation of University of Science and Technology of China),2014.
[13] Kim T W, Choi K S. Science, 2014, 343:990.
[14] Sun Y F, Lei F C, Gao S, Pan B C, Zhou J F, Xie Y. Angew. Chem. Int. Ed., 2013, 52:10569.
[15] 柏嵩(Bai S). 中国科学技术大学博士论文(Doctoral Dissertation of University of Science and Technology of China),2015.
[16] Sakai N, Fukuda K, Shibata T, Ebina Y, Kazunori Takada A, Sasaki T. J. Phys. Chem. B, 2006, 110:6198.
[17] Sun Y F, Cheng H, Gao S, Sun Z H, Liu Q H, Liu Q, Lei F C, Yao T, He J F, Wei S Q. Angew. Chem. Int. Ed., 2012, 51:8727.
[18] Sun Y F, Sun Z H, Gao S, Cheng H, Liu Q H, Piao J Y, Yao T, Wu C Z, Hu S L, Wei S Q, Xie Y. Nat. Commun., 2012, 3:1057.
[19] Teweldebrhan D, Goyal V, Balandin A A. Nano Lett., 2010, 10:1209.
[20] Yang S B, Gong Y J, Zhang J S, Zhan L, Ma L L, Fang Z Y, Vajtai R, Wang X, Ajayan P M. Adv. Mater., 2013, 25:2452.
[21] Guan M L, Xiao C, Zhang J, Fan S J, An R, Cheng Q M, Xie J F, Zhou M, Ye B J, Xie Y. J. Am. Chem. Soc., 2013, 135:10411.
[22] Song J M, Shi Y L, Ren M S, Hu G. Appl. Phys. A, 2014, 116:2139.
[23] 李平(Li P), 李海金(Li H J), 涂文广(Tu W G), 周勇(Zhou Y), 邹志刚(Zou Z G). 物理学报(Acta Physica Sinica), 2015, 64:94209.
[24] Maeda K, Higashi M, Lu D, Abe R, Domen K. J. Am. Chem. Soc., 2010, 132:5858.
[25] Sasaki Y, Nemoto H, Saito K, Kudo A. J. Phys. Chem. C, 2009, 113:17536.
[26] Wen F Y, Li C. Acc. Chem. Res., 2013, 46:2355.
[27] Bard A J, Fox M A. Acc. Chem. Res., 1994, 28:141.
[28] Tachibana Y, Vayssieres L, Durrant J R. Nat. Photonics, 2012, 6:511.
[29] Fleming G R, Schlau-Cohen G S, Amarnath K, Zaks J. Faraday Discuss., 2012, 155:27.
[30] 李晓慧(Li X H), 范同祥(Fan T X). 化学进展(Progress in Chemistry), 2011, 23:1841.
[31] Tim K, Nicolas P, Adrian B, Nowaczyk M M, Guschin D A, Matthias R, Wolfgang S. Angew. Chem., 2013, 52:14233.
[32] Maeda K. Acs Catal., 2013, 3:1486.
[33] Chen S S, Qi Y, Hisatomi T, Ding Q, Asai T, Li Z, Ma S S K, Zhang F X, Domen K, Li C. Angew. Chem. Int. Ed., 2015, 54:8618.
[34] Yan J C, Lu H, Gao W G, Song X, Chen M F. Bioresour. Technol., 2015, 175:269.
[35] Sasaki Y, Kato H, Kudo A. J. Am. Chem. Soc., 2013, 135:5441.
[36] Kudo A. MRS Bull., 2010, 36:32.
[37] Tada H, Mitsui T, Kiyonaga T, Akita T, Tanaka K. Nat. Mater., 2006, 5:782.
[38] Yun H J, Lee H, Kim N D, Lee D M, Yu S, Yi J. ACS Nano, 2011, 5:4084.
[39] Li H Y, Sun Y J, Cai B, Gan S Y, Han D X, Niu L, Wu T S. Appl. Catal. B-Environ., 2015, 170:206.
[40] Ding L, Zhou H, Lou S, Ding J, Zhang D, Zhu H X, Fan T X. Int. J. Hydrogen Energy, 2013, 38:8244.
[41] Lin H L, Cao J, Luo B D, Xu B Y, Chen S F. Catal. Commun., 2012, 21:91.
[42] Wang X W, Gang L, Wang L Z, Chen Z G, Lu G Q, Cheng H M. Laser Phys. Rev., 2012, 2:42.
[43] Iwase A, Ng Y H, Ishiguro Y, Kudo A, Amal R. J. Am. Chem. Soc., 2011, 133:11054.
[44] Chen D L, Li T, Chen Q Q, Gao J B, Fan B B, Li J, Li X J, Zhang R, Sun J, Gao L. Nanoscale, 2012, 4:5431.
[45] Katsumata H, Tachi Y, Suzuki T, Kaneco S. Rsc Adv., 2014, 4:21405.
[46] Chen S F, Ji L, Tang W M, Fu X L. Dalton Trans., 2013, 42:10759.
[47] Wang X W, Liu G, Chen Z G, Li F, Wang L Z, Lu G Q, Cheng H M. Chem. Commun., 2009, 23:3452.
[48] Li H J, Tu W G, Zhou Y, Zou Z G. Adv. Sci., 2016, 1500389.
[49] Tu W G, Zhou Y, Feng S C, Xu Q F, Li P, Wang X Y, Xiao M, Zou Z G. Chem. Commun., 2015, 51:13354.
[50] Zhang L J, Li S, Liu B K, Wang D J, Xie T F. ACS Catal., 2014, 4:3724.
[51] Xiong T, Wen M Q, Dong F, Yu J Y, Han L L, Lei B, Zhang Y X, Tang X S, Zang Z G. Appl. Catal. B-Environ., 2016, 199:87.
[52] He Y M, Zhang L H, Fan M H, Wang X X, Walbridge M L, Nong Q Y, Wu Y, Zhao L H. Sol. Energy Mater. Sol. Cells, 2015, 137:175.
[53] Yu J G, Wang S H, Low J X, Xiao W. Phys. Chem. Chem. Phys., 2013, 15:16883.
[54] Zhou P, Yu J G, Jaroniec M. Adv. Mater., 2014, 26:4920.
[55] Sasaki Y, Nemoto H, Saito K, Kudo A. J. Phys. Chem. C, 2009, 113:17536.
[56] Lei C S, Zhu X F, Le Y, Zhu B C, Yu J G, Ho W. Rsc Adv., 2016, 6:10272.
[57] Niu P, Zhang L L, Liu G, Cheng H M. Adv. Funct. Mater., 2012, 22:4763.
[58] Zhang J, Niu C G, Ke J, Zhou L F, Zeng G M. Catal. Commun., 2015, 59:30.
[59] Qian W, Hisatomi T, Jia Q, Tokudome H, Miao Z, Wang C, Pan Z, Takata T, Nakabayashi M, Shibata N. Nat. Mater., 2016,15:611.
[60] Chen B, Li P, Zhang S, Wei Z, Dong X, Xi F, Liu J. J. Colloid Interf. Sci., 2016, 478:263.
[61] Chen W, Liu T Y, Huang T, Liu X H, Zhu J W, Duan G R, Yang X J. Appl. Surf. Sci., 2015, 355:379.
[62] Ong W J, Tan L L, Ng Y H, Yong S T, Chai S P. Chem. Rev., 2016, 116:7159.
[63] Thomas A, Fischer A, Goettmann F, Antonietti M, Müller J O, Schlögl R, Carlsson J M. J. Mater. Chem., 2008, 41:4893.
[64] Zhang X D, Xie X, Wang H, Zhang J J, Pan B C, Xie Y. J. Am. Chem. Soc., 2013, 135:18.
[65] Hernandez Y, Nicolosi V, Lotya M, Blighe F M, Sun Z, De S, McGovern I T, Holland B, Byrne M, un'Ko Y K, Boland J J, Niraj P, Duesberg G, Krishnamurthy S, Goodhue R, Hutchison J, Scardaci V, Ferrari A C, Coleman J N. Nat. Nanotechnol., 2008, 3:563.
[66] Xu J, Zhang L W, Shi R, Zhu Y F. J. Mater. Chem. A, 2013, 1:14766.
[67] Lu X, Xu K, Chen P, Jia K, Liu S, Wu C. J. Mater. Chem. A, 2014, 2:18924.
[68] Xin J Y, Dong P, Pu L, Tan H, Li J S. Colloids Surf. A, 2014, 450:25.
[69] Wang B, Zhou K Q, Jiang S H, Shi Y Q, Wang B B, Zhou G, Hu Y. Mater. Res. Bull., 2014, 56:107.
[70] Xi W, Peng W C, Li X Y. Int. J. Hydrogen Energy, 2014, 39:13454.
[71] Xu Y, Zhao W W, Xu R, Shi Y M, Zhang B. Chem. Commun., 2013, 49:9803.
[72] Tian Y, Wang L G, Tang H Q, Zhou W W. J. Mater. Chem. A, 2015, 3:11294.
[73] Chen J S, Xin F, Yin X H, Xiang T Y, Wang Y W. Rsc Adv., 2014, 5:3833.
[74] Sarkar S, Leach A D P, Macdonald J E. Chem. Mater., 2016, 28:4324.
[75] Huang Z F, Pan L, Zou J J, Zhang X, Wang L. Nanoscale, 2014, 6:14044.
[76] Pu Y F, Li Y Z, Huang Y L, Sun I K, Cai P, Seo H J. Mater. Lett., 2015, 141:73.
[77] Li J, Yu Y, Zhang L Z. Nanoscale, 2014, 6:8473.
[78] Mi Y, Zhou M, Wen L Y, Zhao H P, Lei Y. Dalton Trans., 2014, 43:9549.
[79] Ye L Q, Su Y R, Jin X L, Xie H Q, Zhang C. Environ. Sci. Nano, 2014, 1:90.
[80] Gao M C, Zhang D F, Pu X P, Li H, Li J W, Shao X, Ding K Y. Mater. Lett., 2015, 140:31.
[81] Kim C W, Son Y S, Kang M J, Kim D Y, Kang Y S. Adv. Energ. Mater., 2016, 6:1501754.
[82] Wang Q, Jiang H, Ding S, Noh H M, Moon B K, Choi B C, Shi J, Jeong J H., Synth. React. Inorg., 2015, 46:483.
[83] Li Y, Sun Z H, Zhu S M, Liao Y L, Chen Z X, Zhang D. Carbon, 2015, 94:599.
[84] Yang C Y, Huang Y, Li T H, Li F. Cheminform, 2015, 46:2560.
[85] Yu H G, Sun Q, Jia X R, Wang X F, Yu J G. Dalton Trans., 2015, 44:14532.
[86] Ao Y H, Xu J L, Wang P F, Wang C, Hou J, Qian J, Li Y. Colloids Surf. A, 2015, 487:66.
[87] Ma Y, Jia Y L, Jiao Z B, Yang M, Qi Y X, Bi Y P. Chem. Commun., 2015, 51:6655.
[88] Zhou Y G, Zhang Y F, Lin M S, Long J L, Zhang Z Z, Lin H X, Wu C S, Wang X X. Nat. Commun., 2015, 6:8340.
[89] Yeh T F, Syu J M, Cheng C, Chang T H, Teng H. Adv. Funct. Mater., 2010, 20:2255.
[90] Samal A, Das D P, Nanda K K, Mishra B K, Das J, Dash A. Chem. Asian J., 2016, 11:584.
[91] Oh J, Chang Y H, Kim Y H, Park S. Phys. Chem. Chem. Phys., 2016, 18:10882.
[92] Yuan Y P, Yin L S, Cao S W, Xu G S, Li C H, Xue C. Appl. Catal. B-Environ., 2015, s168/169:572.
[93] Ma P Y, Yu H J, Yu Y, Wang W M, Wang H, Zhang J Y, Fu Z Y. Phys. Chem. Chem. Phys., 2016, 18:3638.
[94] Wang Y, Niu C G, Zhang L, Wang Y, Zhang H, Huang D W, Zhang X G, Wang L, Zeng G M. Rsc Adv., 2016, 6:10221.
[95] Chen B H, Li P R, Zhang S S, Zhang W, Dong X P, Xi F N, Liu J Y. J. Colloid Interface Sci., 2016, 478:263.
[96] Wang W J, Cheng H F, Huang B B, Liu X L, Qin X Y, Zhang X Y, Ying D. J. Colloid. Interf. Sci., 2015, 442:97.
[97] Cheng H J, Hou J G, Takeda O, Guo X M, Zhu H M. J. Mater. Chem. A, 2015, 3:11006.
[98] Dong M, Wu J, Gao M C, Xin Y J, Ma T J, Sun Y Y. Chem. Eng. J., 2016, 290:136.
[99] Jo W K, Sivakumar N T. ACS Appl. Mat. Interf., 2015, 7:17138.
[100] Jo W K, Lee J Y, Natarajan T S. Phys. Chem. Chem. Phys., 2015, 18:1000.
[101] Liu X L, Yan Y, Da Z L, Shi W D, Ma C C, Lv P, Tang Y F, Yao G X, Wu Y T, Huo P W. Chem. Eng. J., 2014, 241:243.
[102] Wang T Y, Quan W, Jiang D L, Chen L L, Li D, Meng S C, Chen M. Chem. Eng. J., 2016, 300:280.
[103] Zhu J L, Liu S M, Yang Q, Xu P P, Ge J H, Guo X T. Colloids Surf. A, 2016, 489:275
[104] Li W B, Chang F, Dai S Y, Yue J G, Hua F X, Hao H. Appl. Catal. B-Environ., 2015, 168/169:465.
[105] Kumar S, Baruah A, Tonda S, Kumar B, Shanker V, Sreedhar B. Nanoscale, 2014, 6:4830.
[106] He Y M, Zhang L H, Teng B T, Fan M H. Environ. Sci. Technol., 2015, 49:649.
[107] Jo W K, Adinaveen T, Vijaya J J, Selvam N C S. Rsc Adv., 2016, 6:10487.
[108] Liu Y N, Wang R X, Yang Z K, Du H, Jiang Y F, Shen C C, Liang K, Xu A W. Chin. J. Catal., 2015, 36:2135.
[109] Wang H H, Peng D L, Chen T, Chang Y, Dong S J. Ceram. Int., 2016, 42:4406.
[110] Chen X, Tan P F, Zhou B H, Dong H G, Pan J, Xiong X. J. Alloys Compd., 2015, 647:456.
[111] Linsebigler A L, Lu G, Yates J T. Chem. Rev., 1995, 95:735.
[112] Wang X W, Yin L C, Liu G. Chem. Commun., 2014, 50:3460.
[113] Cao S W, Low J X, Yu J G, Jaroniec M. Adv. Mater., 2015, 27:2150.
[114] Yan J Q, Wu H, Chen H, Zhang Y X, Zhang F X, Liu S F. Appl. Catal. B-Environ., 2016, 191:130.
[115] Ye R Q, Fang H B, Zheng Y Z, Li N, Wang Y, Tao X. ACS Appl. Mat. Interf., 2016, 8:13879.
[116] Liu G, Niu P, Sun C, Smith S C, Chen Z, Lu G Q, Cheng H M. J. Am. Chem. Soc., 2010, 132:11642.
[117] Zhang J S, Sun J H, Maeda K, Domen K, Liu P, Antonietti M, Fu X Z, Wang X C. Energy Environ. Sci., 2011, 4:675.
[118] Huang Y, Liu Y, Zhu D Y, Xin Y N, Zhang B. J. Mater. Chem. A, 2016, 4:13626.
[119] Sato N. J. Plant Res., 2004, 117:495.
[120] Liu H M, Wang T, Zhang H B, Meng X G, Hao D, Chang K, Li P, Kako T, Ye J H. Angew. Chem. Int. Ed., 2015, 54:11545
[121] Dionigi F, Vesborg P C K, Pedersen T, Hansen O, Dahl S, Xiong A, Maeda K, Domen K, Chorkendorff I. Energy Environ. Sci., 2011, 4:2937.
[122] Karim M R, Hatakeyama K, Matsui T, Takehira H, Taniguchi T, Koinuma M, Matsumoto Y, Akutagawa T, Nakamura T, Noro S. J. Am. Chem. Soc., 2013, 135:8097.
[123] Wang H, Qiu X Q, Li L P, Li G S. Chem. Lett., 2007, 36:1132.
[124] Maglia F, Tredici I G. J. Mater. Res., 2012, 27:1975.
[125] Wang Q, Li Y B, Hisatomi T, Nakabayashi M, Shibata N, Kubota J, Domen K. J. Catal., 2015, 328:308.
[126] Ma X M, Jiang Q T, Guo W M, Zheng M, Xu W C, Ma F B, Hou B R. Rsc Adv., 2016, 6:28263.
[127] Lai W C, Lin K W, Guo T F, Chen P, Wang Y T. Appl. Phys. Lett., 2015, 107:114.
[128] Sarswat P K, Bhattacharyya D, Free M L, Misra M. Phys. Chem. Chem. Phys., 2016, 18:3788.
[129] Halmann M. Nature, 1978, 275:115.
[130] Inoue T, Fujishima A, Konishi S, Honda K. Nature, 1979, 277:637.
[131] Yuan L, Xu Y J. Appl. Surf. Sci., 2015, 342:154.
[132] Jang Y J, Jeong I, Lee J, Lee J, Ko M J, Lee J S. ACS Nano, 2016, 10:6980.
[133] Jin J, Yu J G, Guo D P, Cui C, Wingkei H. Small, 2015, 11:5262.
[134] Wang J, Yao H C, Fan Z Y, Zhang L, Wang J, Zang S Q, Li Z. ACS Appl. Mat. Interf., 2016, 8:3765.
[135] Kuai L B, Zhou Y, Tu W G, Li P, Li H J, Xu Q F, Tang L Q, Wang X Y, Xiao M, Zou Z G. Rsc Adv., 2015, 5:88409.
[136] Yu W L, Xu D F, Peng T Y. J. Mater. Chem. A, 2015, 3:19936.
[1] 周丽, Abdelkrim Yasmine, 姜志国, 于中振, 曲晋. 微塑料:生物效应、分析和降解方法综述[J]. 化学进展, 2022, 34(9): 1935-1946.
[2] 范倩倩, 温璐, 马建中. 无铅卤系钙钛矿纳米晶:新一代光催化材料[J]. 化学进展, 2022, 34(8): 1809-1814.
[3] 庞欣, 薛世翔, 周彤, 袁蝴蝶, 刘冲, 雷琬莹. 二维黑磷基纳米材料在光催化中的应用[J]. 化学进展, 2022, 34(3): 630-642.
[4] 王楠, 周宇齐, 姜子叶, 吕田钰, 林进, 宋洲, 朱丽华. 还原-氧化协同降解全/多卤代有机污染物[J]. 化学进展, 2022, 34(12): 2667-2685.
[5] 陈肖萍, 陈巧珊, 毕进红. 光催化降解土壤中多环芳烃[J]. 化学进展, 2021, 33(8): 1323-1330.
[6] 任艳梅, 王家骏, 王平. 二硫化钼析氢电催化剂[J]. 化学进展, 2021, 33(8): 1270-1279.
[7] 郭俊兰, 梁英华, 王欢, 刘利, 崔文权. 光催化制氢的助催化剂[J]. 化学进展, 2021, 33(7): 1100-1114.
[8] 衣晓虹, 王崇臣. 铁基金属-有机骨架及其复合物高级氧化降解水中新兴有机污染物[J]. 化学进展, 2021, 33(3): 471-489.
[9] 曹军文, 张文强, 李一枫, 赵晨欢, 郑云, 于波. 中国制氢技术的发展现状[J]. 化学进展, 2021, 33(12): 2215-2244.
[10] 毕洪飞, 刘劲松, 吴正颖, 索赫, 吕学良, 付云龙. 硫化铟锌的改性合成及光催化特性[J]. 化学进展, 2021, 33(12): 2334-2347.
[11] 冯勇, 李谕, 应光国. 基于过硫酸盐活化的微界面电子转移氧化技术[J]. 化学进展, 2021, 33(11): 2138-2149.
[12] 淡猛, 蔡晴, 向将来, 李筠连, 于姗, 周莹. 用于光催化分解硫化氢制氢的金属硫化物[J]. 化学进展, 2020, 32(7): 917-926.
[13] 姚淇露, 杜红霞, 卢章辉. 氨硼烷催化水解制氢[J]. 化学进展, 2020, 32(12): 1930-1951.
[14] 吴正颖, 刘谢, 刘劲松, 刘守清, 查振龙, 陈志刚. 二硫化钼基复合材料的合成及光催化降解与产氢特性[J]. 化学进展, 2019, 31(8): 1086-1102.
[15] 易享炎, 黄菲, JonathanB.Baell, 黄和, 于杨. 可见光催化C(sp 3)-C(sp 3)键的构筑[J]. 化学进展, 2019, 31(4): 505-515.