English
新闻公告
More
化学进展 2016, Vol. 28 Issue (8): 1186-1195 DOI: 10.7536/PC160342 前一篇   后一篇

• 综述与评论 •

氧化石墨烯/金银纳米粒子复合材料的制备及其SERS效应研究

郝锐1,2, 张丛筠1,2*, 卢亚1,2, 张东杰1,2, 郝耀武3, 刘亚青1,2   

  1. 1. 中北大学 纳米功能复合材料山西省重点实验室 太原 030051;
    2. 中北大学材料科学与工程学院 太原 030051;
    3. 德克萨斯大学阿灵顿分校材料科学与工程系 阿灵顿 76019
  • 收稿日期:2016-03-01 修回日期:2016-05-01 出版日期:2016-08-15 发布日期:2016-07-12
  • 通讯作者: 张丛筠 E-mail:z.congyun@nuc.edu.cn;lyq@nuc.edu.cn
  • 基金资助:
    山西省国际科技合作项目(No.2014081006-2)和山西省青年科学基金(No.2015021078)资助

Preparation and Surface-Enhanced Raman Scattering Effect of Graphene Oxide/(Au/Ag) Hybrid Materials

Hao Rui1,2, Zhang Congyun1,2*, Lu Ya1,2, Zhang Dongjie1,2, Hao Yaowu3, Liu Yaqing1,2   

  1. 1. Shanxi Province Key Laboratory of Functional Nanocomposites, North University of China, Taiyuan 030051, China;
    2. School of Materials Science and Engineering, North University of China, Taiyuan 030051, China;
    3. Department of Materials Science and Engineering, The University of Texas at Arlington, Arlington 76019, USA
  • Received:2016-03-01 Revised:2016-05-01 Online:2016-08-15 Published:2016-07-12
  • Supported by:
    The work was supported by the International Science and Technology Program of Shanxi Province (No.2014081006-2), and the Natural Science Foundation for Young Scientists of Shanxi Province, China(No.2015021078)
近年来,氧化石墨烯/金银纳米粒子复合材料由于其优异的表面增强拉曼散射(SERS)性能引起了人们极大的关注,在污染物检测、化学传感和癌症诊断等领域具有重要的应用价值。本文综述了氧化石墨烯片层上修饰金银纳米粒子、氧化石墨烯包覆金银纳米粒子、氧化石墨烯附着在金银纳米粒子层三种氧化石墨烯/金银纳米粒子复合材料的制备方法,对其SERS效应进行了详细介绍。SERS研究表明,结合了金银纳米粒子与氧化石墨烯两种材料各自在SERS研究与应用中的优势,氧化石墨烯/金银纳米粒子复合材料的SERS性能比单纯金银纳米粒子更加优异。氧化石墨烯在其中起到了化学增强、分子富集、钝化保护、荧光猝灭的重要作用。氧化石墨烯/金银纳米粒子复合材料在表面增强拉曼光谱中具有广阔的应用前景。
Graphene oxide/(Au/Ag) hybrid materials, which have significant value in pollutant detection, chemical sensing and cancer diagnosis, have received considerable attention for recent years because of their excellent surface-enhanced Raman scattering (SERS) effects. In this review, the synthesis methods and SERS effects of three kind of graphene oxide/(Au/Ag) hybrid materials (graphene oxide decorated with Au/Ag nanoparticles, graphene oxide encapsulated Au/Ag nanoparticles, graphene oxide coated on Au/Ag nanoparticles films) have been summarized in detail. SERS studies show that by combining with the respective advantages of Au/Ag nanoparticles and graphene oxide on the research and application of SERS, graphene oxide/(Au/Ag) hybrid materials have more excellent SERS effect than pure Au/Ag nanoparticles. Graphene oxide plays an important role in chemical enhancement, molecule enrichment, surface passivation and fluorescence quencher. Graphene oxide/(Au/Ag) hybrid materials have broad application prospects in SERS.

Contents
1 Introduction
2 Preparation of graphene oxide/(Au/Ag) hybrid materials
2.1 Graphene oxide decorated with Au/Ag nanoparticles
2.2 Graphene oxide encapsulated Au/Ag nanoparticles
2.3 Graphene oxide coated on Au/Ag nanoparticles films
3 SERS effect of graphene oxide/(Au/Ag) hybrid materials
3.1 SERS effect of different structure of graphene oxide/(Au/Ag) hybrid materials
3.2 The practical SERS application of graphene oxide/(Au/Ag) hybrid materials
4 Conclusion

中图分类号: 

()
[1] Fleischmann M,Hendra P J,McQuillan A J.Chem.Phys.Lett.,1974,26(2):163.
[2] Tripp R A,Dluhy R A,Zhao Y.Nano Today,2008,3(3):31.
[3] Vo-Dinh T,Wang H N,Scaffidi J.Journal of Biophotonics,2010,3(1/2):89.
[4] Indrasekara A,Meyers S,Shubeita S,Feldman L,Gustafsson T,Fabris L.Nanoscale,2014,6(15):8891.
[5] Zhang H,Lv X,Li Y,Wang Y,Li J.ACS nano,2009,4(1):380.
[6] Li L L,Liu K P,Yang G H,Wang C M,Zhang J R,Zhu J J.Advanced Functional Materials,2011,21(5):869.
[7] Campion A,Kambhampati P.Chem.Soc.Rev.,1998,27(4):241.
[8] Jensen L,Aikens C M,Schatz G C.Chemical Society Reviews,2008,37(5):1061.
[9] Le Ru E C,Etchegoin P G,Meyer M.The Journal of Chemical Physics,2006,125(20):204701.
[10] Zavaleta C L,Smith B R,Walton I,Doeringb W,Davisb G,Shojaeib B,Natanb M J,Gambhir S S.Proceedings of the National Academy of Sciences,2009,106(32):13511.
[11] Nie S,Emory S R.Sci.,1997,275(5303):1102.
[12] Lin X M,Cui Y,Xu Y H,Ren B,Tian Z Q.Analytical and Bioanalytical Chemistry,2009,394(7):1729.
[13] Fan M,Andrade G F S,Brolo A G.Analytica Chimica Acta,2011,693(1):7.
[14] DeSantis C J,Peverly A A,Peters D G,Skrabalak S E.Nano Letters,2011,11(5):2164.
[15] Hrelescu C,Sau T K,Rogach A L,Jäckel F,Laurent G,Douillard L,Charra F.Nano Letters,2011,11(2):402.
[16] Xu W,Mao N,Zhang J.Small,2013,9(8):1206.
[17] Raj R,Maroo S C,Wang E N.Nano Letters,2013,13(4):1509.
[18] Fan W,Lee Y H,Pedireddy S,Zhang Q,Liu T X,Ling X Y.Nanoscale,2014,6,4843.
[19] Xu W G,Xiao J Q,Chen Y F,Chen Y B,Ling X,Zhang J.Adv.Mater.,2013,25,928.
[20] Wang P,Liang O,Zhang W,Schroeder T,Xie Y H.Adv.Mater.,2013,25(35):4918.
[21] Hao Q,Wang B,Bossard J A,Kiraly B,Zeng Y,Chiang I K,Huang T J.The Journal of Physical Chemistry C,2012,116(13):7249.
[22] Fan W,Lee Y H,Pedireddy S,Zhang Q,Liu T,Ling X Y.Nanoscale,2014,6(9):4843.
[23] Turcheniuk K,Boukherroub R,Szunerits S.Journal of Materials Chemistry B,2015,3(21):4301.
[24] Yin P T,Shah S,Chhowalla M,Manish C,Lee K B.Chemical Reviews,2015,115(7):2483.
[25] Xu W,Mao N,Zhang J.Small,2013,9(8):1206.
[26] Yin P T,Shah S,Chhowalla M,Lee K B.Chemical Reviews,2015,115(7):2483.
[27] Qi X,Li H,Lam J W Y,Yuan X,Wei J,Tang B Z,Zhang H.Advanced Materials,2012,24(30):4191.
[28] Tien H W,Huang Y L,Yang S Y,Wang J Y,Ma C C M.Carbon,2011,49(5):1550.
[29] Chen Y,Li Y,Sun D,Tian D,Zhang J,Zhu J J.Journal of Materials Chemistry,2011,21(21):7604.
[30] Gao W,Alemany L B,Ci L,Ajayan P M.Nature Chemistry,2009,1(5):403.
[31] Dutta S,Ray C,Sarkar S,Pradhan M,Negishi Y,Pal T.ACS Applied Materials&Interfaces,2013,5(17):8724.
[32] Hussain N,Gogoi A,Sarma R K,Sharma P,Barras A,Boukherroub R,Das M R.ChemPlusChem,2014,79(12):1774.
[33] Tang X Z,Li X,Cao Z,Yang J,Wang H,Pu X,Yu Z Z.Carbon,2013,59:93.
[34] Zhou L,Gu H,Wang C,Zhang J,Lv M,He R.Colloids and Surfaces A:Physicochemical and Engineering Aspects,2013,430:103.
[35] He F A,Fan J T,Song F,Zhang L M,Chan H L W.Nanoscale,2011,3(3):1182.
[36] Yang X,Xu M,Qiu W,Chen X,Deng M,Zhang J,Chen,H.Journal of Materials Chemistry,2011,21(22):8096.
[37] Gupta V K,Atar N,Yola M L,Ery?lmaz M,Torul H,Tamer U,Vstünda? Z.Journal of Colloid and Interface Science,2013,406:231.
[38] Qian Z,Cheng Y,Zhou X,Wu J,Xu G.Journal of Colloid and Interface Science,2013,397:103.
[39] Ren W,Fang Y,Wang E.ACS Nano,2011,5(8):6425.
[40] Huang J,Zhang L,Chen B,Ji N,Chen F,Zhang Y,Zhang Z.Nanoscale,2010,2(12):2733.
[41] Jiang T,Kuila T,Kim N H,Ku B C,Lee J H.Composites Science and Technology,2013,79:115.
[42] Yang S,Feng X,Ivanovici S,Müllen K.Angewandte Chemie International Edition,2010,49(45):8408.
[43] Liu Y,Hu Y,Zhang J.The Journal of Physical Chemistry C,2014,118(17):8993.
[44] Xu C,Yang D,Mei L,Lu B,Chen L,Li Q,Zhu H,Wang T.ACS Applied Materials&Interfaces,2013,5(7):2715.
[45] Jalani G,Cerruti M.Nanoscale,2015,7(22):9990.
[46] Liu A,Xu T,Tang J,Wu H,Zhao T,Tang W.Electrochimica Acta,2014,119:43.
[47] Zhao Y,Li X,Du Y,Chen G,Qu Y,Jiang J,Zhu Y.Nanoscale,2014,6(19):11112.
[48] Li X,Li J,Zhou X,Ma Y,Zheng Z,Duan X,Qu Y.Carbon,2014,66:713.
[49] Zhang L,Jiang C,Zhang Z.Nanoscale,2013,5(9):3773.
[50] Liu A,Xu T,Ren Q,Yuan M,Dong W,Tang W.Electrochemistry Communications,2012,25:74.
[51] Geim A K,Novoselov K S.Nature materials,2007,6(3):183.
[52] He Q,Wu S,Yin Z,Zhang H.Chemical Science,2012,3(6):1764.
[53] Loh K P,Bao Q,Eda G,Chhowalla M.Nature Chemistry,2010,2(12):1015.
[54] Qi X,Li H,Lam J W Y,Yuan X,Wei J,Tang B Z,Zhang H.Advanced Materials,2012,24(30):4191.
[55] Bagri A,Mattevi C,Acik M,Chabal Y J,Chhowalla M,Shenoy V B.Nature Chemistry,2010,2(7):581.
[56] Xie L,Ling X,Fang Y,Zhang J,Liu Z.Journal of the American Chemical Society,2009,131(29):9890.
[57] Chen P,Yin Z Y,Huang X,Wu S X,Liedberg B,Zhang H.J.Phys.Chem.C,2011,115(49):24080.
[58] Gong T,Zhu Y,Zhang J,Ren W,Quan J,Wang N.Carbon,2015,87:385.
[59] Xu C,Yang D,Mei L,Lu B,Chen L,Li Q,Zhu H,Wang T.ACS Applied Materials&Interfaces,2013,5(7):2715.
[60] Kim Y K,Han S W,Min D H.ACS Applied Materials&Interfaces,2012,4(12):6545.
[61] Xie Y,Li Y,Niu L,Wang H,Qian H,Yao W.Talanta,2012,100:32.
[62] Kanchanapally R,Sinha S S,Fan Z,Dubey M,Zakar E,Ray P C.The Journal of Physical Chemistry C,2014,118(13):7070.
[63] Fu W L,Zhen S J,Huang C Z.RSC Advances,2014,4(31):16327.
[1] 李婧, 朱伟钢, 胡文平. 基于有机复合材料的近红外和短波红外光探测器[J]. 化学进展, 2023, 35(1): 119-134.
[2] 王琦桐, 丁嘉乐, 赵丹莹, 张云鹤, 姜振华. 储能薄膜电容器介电高分子材料[J]. 化学进展, 2023, 35(1): 168-176.
[3] 蒋峰景, 宋涵晨. 石墨基液流电池复合双极板[J]. 化学进展, 2022, 34(6): 1290-1297.
[4] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[5] 李晓微, 张雷, 邢其鑫, 昝金宇, 周晋, 禚淑萍. 磁性NiFe2O4基复合材料的构筑及光催化应用[J]. 化学进展, 2022, 34(4): 950-962.
[6] 徐妍, 苑春刚. 纳米零价铁复合材料制备、稳定方法及其水处理应用[J]. 化学进展, 2022, 34(3): 717-742.
[7] 庞欣, 薛世翔, 周彤, 袁蝴蝶, 刘冲, 雷琬莹. 二维黑磷基纳米材料在光催化中的应用[J]. 化学进展, 2022, 34(3): 630-642.
[8] 李金召, 李政, 庄旭品, 巩继贤, 李秋瑾, 张健飞. 纤维素纳米晶体的制备及其在复合材料中的应用[J]. 化学进展, 2021, 33(8): 1293-1310.
[9] 朱彬彬, 郑晓慧, 杨光, 曾旭, 邱伟, 徐斌. 氧化石墨烯分离膜机械性能调控[J]. 化学进展, 2021, 33(4): 670-677.
[10] 张天永, 吴畏, 朱剑, 李彬, 姜爽. 基于纳米碳填料可拉伸导电聚合物复合材料的制备[J]. 化学进展, 2021, 33(3): 417-425.
[11] 李超, 乔瑶雨, 李禹红, 闻静, 何乃普, 黎白钰. MOFs/水凝胶复合材料的制备及其应用研究[J]. 化学进展, 2021, 33(11): 1964-1971.
[12] 冯业娜, 刘书河, 张书博, 薛彤, 庄鸿麟, 冯岸超. 基于聚合诱导自组装制备二氧化硅/聚合物纳米复合材料[J]. 化学进展, 2021, 33(11): 1953-1963.
[13] 肖晶晶, 王牧, 张伟杰, 赵秀英, 冯岸超, 张立群. 铅卤钙钛矿-聚合物复合材料的制备及应用[J]. 化学进展, 2021, 33(10): 1731-1740.
[14] 康美荣, 金福祥, 李臻, 宋河远, 陈静. 离子液体固载化及应用研究[J]. 化学进展, 2020, 32(9): 1274-1293.
[15] 贾航, 乔越, 张玉, 孟庆鑫, 刘程, 蹇锡高. 玄武岩纤维增强树脂基复合材料界面改性策略[J]. 化学进展, 2020, 32(9): 1307-1315.