English
新闻公告
More
化学进展 2015, Vol. 27 Issue (12): 1689-1704 DOI: 10.7536/PC150640 前一篇   后一篇

• 综述与评论 •

单原子催化——概念、方法与应用

靳永勇, 郝盼盼, 任军*, 李忠   

  1. 太原理工大学 煤科学与技术教育部和山西省重点实验室 太原 030024
  • 收稿日期:2015-06-01 修回日期:2015-08-01 出版日期:2015-12-15 发布日期:2015-09-17
  • 通讯作者: 任军 E-mail:renjun@tyut.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.21376159,21276169)和中国博士后科学基金项目(No.2014M551060)资助

Single Atom Catalysis:Concept, Method and Application

Jin Yongyong, Hao Panpan, Ren Jun*, Li Zhong   

  1. Key Laboratory of Coal Science and Technology, Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, China
  • Received:2015-06-01 Revised:2015-08-01 Online:2015-12-15 Published:2015-09-17
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21376159, 21276169) and the National Science Foundation for Post-doctoral Scientists of China (No. 2014M551060).
单原子催化体系的成功构建将催化领域研究深入到更小的尺度范围,不仅可以从原子层次认识复杂的多相催化反应,而且由于其优越的催化性能在工业催化中具有巨大的应用潜能。本文基于近年来国内外研究者在单原子催化领域的研究工作,总结归纳了单原子催化剂的性能特征,介绍了单原子催化剂的制备手段、表征技术、理论研究及其在CO氧化、选择性加氢和光电催化等反应中的应用研究进展,分析了单原子催化剂特殊的电子结构对催化性能和反应机理的影响及其作用机制,指出了单原子催化体系在研究领域取得的突破与不足,对于深刻认识单原子催化的概念与原理、完善实验与理论研究方法、拓展应用范围和尽早实现工业应用提出了建议与展望。
With the fabrication of single atom catalysts (SACs) as a new concept, researches on catalysts have deep into smaller scale, which can make it available to dissect complex heterogeneous catalysis on atomic lever, simultaneously provide vast opportunities for applications in industrial catalysis because of their predominant performances. Based on the previous achievements, the main components of this research are as follows: the performance characteristics of SACs are summarized, the preparation, characterizations and theoretical approaches about SACs are introduced, the research developments of applications in CO oxidization, selective hydrogenation and photoelectrocatalysis reaction, etc. are illustrated, the influences of the exceptive electronic structure of SACs on catalytic performance and reaction mechanism are analyzed, the breakthroughs and the shortages of SACs system are pointed out. All these discussions contribute to the profound understanding on principles of SACs, improvement of both theoretical and experimental researches, and furthermore put forward suggestions and prospective for expanding its application range and achieving industrial applications.

Contents
1 Introduction
2 Fabrication and properties of SACs
2.1 Selection of substrates
2.2 Preparation methods
2.3 Catalytic characteristics
3 Structural characterization of SACs
3.1 Characterization methods
3.2 Structual characterization
4 Theoretical methods
4.1 Configuration prediction
4.2 Exploration of reaction mechanism
5 Application of SACs
5.1 Oxidation reaction
5.2 Hydrogenation reaction
5.3 Photoelectrocatalysis reaction
5.4 Other reactions
6 Conclusion

中图分类号: 

()
[1] 陈诵英(Cheng S Y). 催化反应工程基础(Catalytic Reactor Engineering).北京:化学工业出版社(Beijing:Chemical Industry Press), 2011. 7.
[2] Haruta M, Kobayashi T, Sano H, Yamada N. Chem. Lett., 1987, 16(2): 405.
[3] Boyen H G, Kästle G, Weigl F, Koslowski B, Dietrich C, Ziemann P, Spatz J, Riethmüller S, Hartmann C, Möller M. Science, 2002, 297(5586): 1533.
[4] Valden M, Lai X, Goodman D W. Science, 1998, 281(5383): 1647.
[5] Uzun A, Ortalan V, Hao Y, Browning N D, Gates B C. ACS Nano, 2009, 3(11): 3691.
[6] Kaden W E, Wu T, Kunkel W A, Anderson S L. Science, 2009, 326(5954): 826.
[7] Herzing A A, Kiely C J, Carley A F, Landon P, Hutchings G J. Science, 2008, 321(5894): 1331.
[8] Turner M, Golovko V B, Vaughan O P, Abdulkin P, Berenguer-Murcia A, Tikhov M S, Johnson B F, Lambert R M. Nature, 2008, 454(7207): 981.
[9] Vajda S, Pellin M J, Greeley J P, Marshall C L, Curtiss L A, Ballentine G A, Elam J W, Catillon Mucherie S, Redfern P C, Mehmood F. Nat. Mater., 2009, 8(3): 213.
[10] Judai K, Abbet S, Wörz A S, Heiz U, Henry C R. J. Am. Chem. Soc., 2004, 126(9): 2732.
[11] Lei Y, Mehmood F, Lee S, Greeley J, Lee B, Seifert S, Winans R E, Elam J W, Meyer R J, Redfern P C. Science, 2010, 328(5975): 224.
[12] Qiao B, Wang A, Li L, Lin Q, Wei H, Liu J, Zhang T. ACS Catal., 2014, 4(7): 2113.
[13] Thomas J M, Saghi Z, Gai P L. Top. Catal., 2011, 54(10/12): 588.
[14] Pierre D, Deng W, Flytzani-Stephanopoulos M. Top. Catal., 2007, 46(3/4): 363.
[15] Zhang X, Shi H, Xu B Q. Angew. Chem. Int. Ed, 2005, 44(43): 7132.
[16] Shi Y, Zhao C, Wei H, Guo J, Liang S, Wang A, Zhang T, Liu J, Ma T. Adv. Mater., 2014, 26(48): 8147.
[17] Qiao B, Wang A, Yang X, Allard L F, Jiang Z, Cui Y, Liu J, Li J, Zhang T. Nat. Chem., 2011, 3(8): 634.
[18] Zhang L, Wang A, Miller J T, Liu X, Yang X, Wang W, Li L, Huang Y, Mou C Y, Zhang T. ACS Catal., 2014, 4(5): 1546.
[19] Poh C K, Lim S H, Lin J, Feng Y P. J. Phys. Chem. C, 2014, 118(25): 13525.
[20] Yang X F, Wang A, Qiao B, Li J, Liu J, Zhang T. Accounts Chem. Res., 2013, 46(8): 1740.
[21] Liang J X, Lin J, Yang X F, Wang A Q, Qiao B T, Liu J, Zhang T, Li J. J. Phys. Chem. C, 2014, 118(38): 21945.
[22] Mao K, Li L, Zhang W, Pei Y, Zeng X C, Wu X, Yang J. Sci. Rep., 2014, 4. 5441.
[23] Wu P, Du P, Zhang H, Cai C. Phys. Chem. Chem. Phys., 2015, 17(2): 1441.
[24] Moses-DeBusk M, Yoon M, Allard L F, Mullins D R, Wu Z, Yang X, Veith G, Stocks G M, Narula C K. J. Am. Chem. Soc., 2013, 135(34): 12634.
[25] Ghosh T K, Nair N N. ChemCatChem, 2013, 5(7): 1811.
[26] Song W, Hensen E J M. J. Phys. Chem. C, 2013, 117(15): 7721.
[27] Liu K, Wang A, Zhang T. ACS Catal., 2012, 2(6): 1165.
[28] Lin J, Qiao B, Liu J, Huang Y, Wang A, Li L, Zhang W, Allard L F, Wang X, Zhang T. Angew. Chem. Int. Ed., 2012, 51(12): 2920.
[29] Liu X, Duan T, Meng C, Han Y. RSC Adv., 2015, 5(14): 10452.
[30] Li F, Li Y, Zeng X C, Chen Z. ACS Catal., 2014, 5(2): 544.
[31] Liu X, Duan T, Sui Y, Meng C, Han Y. RSC Adv., 2014, 4(73): 38750.
[32] Liu Z P, Wang C M, Fan K N. Angew. Chem. Int. Ed., 2006, 118(41): 7019.
[33] Kyriakou G, Boucher M B, Jewell A D, Lewis E A, Lawton T J, Baber A E, Tierney H L, Flytzani-Stephanopoulos M, Sykes E H. Science, 2012, 335(6073): 1209.
[34] Pei G X, Liu X Y, Wang A, Li L, Huang Y, Zhang T, Lee J W, Jang B W, Mou C Y. New J. Chem., 2014, 38(5): 2043.
[35] Wei H, Liu X, Wang A, Zhang L, Qiao B, Yang X, Huang Y, Miao S, Liu J, Zhang T. Nat. Commun., 2014, 5: 5634.
[36] Ding W C, Gu X K, Su H Y, Li W X. J. Phys. Chem. C, 2014, 118(23): 12216.
[37] Narula C K, Allard L F, Stocks G, Moses-DeBusk M. Sci. Rep., 2014, 4,7238.
[38] Wang L, Zhang S, Zhu Y, Patlolla A, Shan J, Yoshida H, Takeda S, Frenkel A I, Tao F. ACS Catal., 2013, 3(5): 1011.
[39] Lin J, Wang A, Qiao B, Liu X, Yang X, Wang X, Liang J, Li J, Liu J, Zhang T. J. Am. Chem. Soc., 2013, 135(41): 15314.
[40] Gu X K, Qiao B, Huang C Q, Ding W C, Sun K, Zhan E, Zhang T, Liu J, Li W X. ACS Catal., 2014, 4(11): 3886.
[41] Sun S, Zhang G, Gauquelin N, Chen N, Zhou J, Yang S, Chen W, Meng X, Geng D, Banis M N, Li R, Ye S, Knights S, Botton G A, Sham T K, Sun X. Sci. Rep., 2013, 3,1775.
[42] Xing J, Chen J F, Li Y H, Yuan W T, Zhou Y, Zheng L R, Wang H F, Hu P, Wang Y, Zhao H J, Wang Y, Yang H G. Chemistry, 2014, 20(8): 2138.
[43] Hu P, Huang Z, Amghouz Z, Makkee M, Xu F, Kapteijn F, Dikhtiarenko A, Chen Y, Gu X, Tang X. Angew. Chem. Int. Ed. Engl., 2014, 53(13): 3418.
[44] Gu X K, Qiao B, Huang C Q, Ding W C, Sun K, Zhan E, Zhang T, Liu J, Li W X. ACS Catal., 2014, 4(11): 3886.
[45] Wang Y, Zhou Q, Yang M, Wang J. Comput. Theor. Chem., 2013, 1021: 262.
[46] Wei X, Yang X F, Wang A Q, Li L, Liu X Y, Zhang T, Mou C Y, Li J. J. Phys. Chem. C, 2012, 116(10): 6222.
[47] Zhang H, Kawashima K, Okumura M, Toshima N. J. Mater. Chem. A, 2014, 2(33): 13498.
[48] Novoselov K, Jiang D, Schedin F, Booth T, Khotkevich V, Morozov S, Geim A. Proc. Natl. Acad. Sci. U.S.A., 2005, 102(30): 10451.
[49] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Science, 2004, 306(5696): 666.
[50] Yin H, Tang H, Wang D, Gao Y, Tang Z. ACS Nano, 2012, 6(9): 8288.
[51] Scheuermann G M, Rumi L, Steurer P, Bannwarth W, Mülhaupt R. J. Am. Chem. Soc., 2009, 131(23): 8262.
[52] Machado B F, Serp P. Catal. Sci. & Technol., 2012, 2(1): 54.
[53] 徐秀娟(Chen X J), 秦金贵(Qin J G), 李振(Li Z). 化学进展(Progress in Chemistry), 2009, 21(12): 2559.
[54] Aaltonen T, Rahtu A, Ritala M, Leskelä M. Electrochem. Solid State Lett., 2003, 6(9): C130.
[55] Wang H, Wang Q, Cheng Y, Li K, Yao Y, Zhang Q, Dong C, Wang P, Schwingenschlogl U, Yang W, Zhang X X. Nano Lett., 2012, 12(1): 141.
[56] Song L, Ci L, Lu H, Sorokin P B, Jin C, Ni J, Kvashnin A G, Kvashnin D G, Lou J, Yakobson B I. Nano Lett., 2010, 10(8): 3209.
[57] Warner J H, Rummeli M H, Bachmatiuk A, Büchner B. ACS Nano, 2010, 4(3): 1299.
[58] Grad G, Blaha P, Schwarz K, Auwärter W, Greber T. Phys. Rev. B, 2003, 68(8): 085404.
[59] Lin S, Ye X, Johnson R S, Guo H. J. Phys. Chem. C, 2013, 117(33): 17319.
[60] Zhao P, Su Y, Zhang Y, Li S-J, Chen G. Chem. Phys. Lett., 2011, 515(1): 159.
[61] Gao M, Lyalin A, Taketsugu T. J. Chem. Phys., 2013, 138(3): 034701.
[62] Thomas J M, Raja R, Lewis D W. Angew. Chem. Int. Ed., 2005, 44(40): 6456.
[63] Thomas J M. Phys. Chem. Chem. Phys., 2014, 16(17): 7647.
[64] Flytzani-Stephanopoulos M, Gates B C. Annu. Rev. Chem. Biomol., 2012, 3: 545.
[65] Lu J, Aydin C, Browning N D, Gates B C. Angew. Chem. Int. Ed., 2012, 124(24): 5944.
[66] Kistler J D, Chotigkrai N, Xu P, Enderle B, Praserthdam P, Chen C Y, Browning N D, Gates B C. Angew. Chem. Int. Ed., 2014, 126(34): 9050.
[67] Abbet S, Sanchez A, Heiz U, Schneider W D, Ferrari A, Pacchioni G, Rösch N. J. Am. Chem. Soc., 2000, 122(14): 3453.
[68] Heiz U, Sanchez A, Abbet S, Schneider W D. J. Am. Chem. Soc., 1999, 121(13): 3214.
[69] Akolekar D B, Bhargava S K, Foran G, Takahashi M. J. Mol. Catal. A: Chem., 2005, 238(1): 78.
[70] Bekyarova E, Kaneko K. Adv. Mater., 2000, 12(21): 1625.
[71] Wei H, Liu X, Wang A, Zhang L, Qiao B, Yang X, Huang Y, Miao S, Liu J, Zhang T. Nat. Commun., 2014, 5,5634.
[72] Lin J, Qiao B, Li N, Li L, Sun X, Liu J, Wang X, Zhang T. Chem. Commun., 2015, 51(37): 7911.
[73] Qiao B, Liang J X, Wang A, Xu C Q, Li J, Zhang T, Liu J J. Nano Res., 2015, 8(9):2913.
[74] Ehresmann J O, Kletnieks P W, Liang A, Bhirud V A, Bagatchenko O P, Lee E J, Klaric M, Gates B C, Haw J F. Angew. Chem. Int. Ed., 2006, 45(4): 574.
[75] Hackett S F, Brydson R M, Gass M H, Harvey I, Newman A D, Wilson K, Lee A F. Angew. Chem. Int. Ed., 2007, 119(45): 8747.
[76] Kim Y T, Ohshima K, Higashimine K, Uruga T, Takata M, Suematsu H, Mitani T. Angew. Chem. Int. Ed., 2006, 118(3): 421.
[77] Yang M, Li S, Wang Y, Herron J A, Xu Y, Allard L F, Lee S, Huang J, Mavrikakis M, Flytzani Stephanopoulos M. Science, 2014, 346(6216): 1498.
[78] Yang M, Allard L F, Flytzani-Stephanopoulos M. J. Am. Chem. Soc., 2013, 135(10): 3768.
[79] 陈彩营(Chen C Y).太原理工大学硕士论文( Master Thesis of Taiyuan University of Technology), 2014.
[80] Huang Z, Gu X, Cao Q, Hu P, Hao J, Li J, Tang X. Angew. Chem. Int. Ed., 2012, 124(17): 4274.
[81] Guo X, Fang G, Li G, Ma H, Fan H, Yu L, Ma C, Wu X, Deng D, Wei M, Tan D, Si R, Zhang S, Li J, Sun L, Tang Z, Pan X, Bao X. Science, 2014, 344(6184): 616.
[82] Gong X Q, Selloni A, Dulub O, Jacobson P, Diebold U. J. Am. Chem. Soc., 2008, 130(1): 370.
[83] Bell A T. Science, 2003, 299(5613): 1688.
[84] Haruta M. Cattech, 2002, 6(3): 102.
[85] Chang T Y, Tanaka Y, Ishikawa R, Toyoura K, Matsunaga K, Ikuhara Y, Shibata N. Nano Lett., 2014, 14(1): 134.
[86] Krivanek O L, Chisholm M F, Nicolosi V, Pennycook T J, Corbin G J, Dellby N, Murfitt M F, Own C S, Szilagyi Z S, Oxley M P. Nature, 2010, 464(7288): 571.
[87] Zhang X, Guo J, Guan P, Liu C, Huang H, Xue F, Dong X, Pennycook S J, Chisholm M F. Nat. Commun., 2013, 4: 1924.
[88] Emmrich M, Huber F, Pielmeier F, Welker J, Hofmann T, Schneiderbauer M, Meuer D, Polesya S, Mankovsky S, Ködderitzsch D. Science, 2015, 348(6232): 308.
[89] Wanjala B N, Fang B, Luo J, Chen Y, Yin J, Engelhard M H, Loukrakpam R, Zhong C J. J. Am. Chem. Soc., 2011, 133(32): 12714.
[90] 刘向文(Liu X W), 王定胜(Wang D S), 彭卿(Peng Q), 李亚栋(Li Y D). 中国科学: 化学(Science China Chemistry), 2014, 1: 011.
[91] 麦振洪(Mai Z H). 同步辐射光源及其应用(Synchrotron Radiation Light Source and its Application). 北京:科学出版社(Beijing:Science Press), 2013.03.
[92] Chen M, Goodman D. Science, 2004, 306(5694): 252.
[93] Matthey D, Wang J, Wendt S, Matthiesen J, Schaub R, Lgsgaard E, Hammer B, Besenbacher F. Science, 2007, 315(5819): 1692.
[94] Kwak J H, Hu J, Mei D, Yi C W, Kim D H, Peden C H, Allard L F, Szanyi J. Science. 2009, 325(5948): 1670.
[95] Liu L, Zhou F, Wang L, Qi X, Shi F, Deng Y. J Catal., 2010, 274(1): 1.
[96] Calaza F C, Xu Y, Mullins D R, Overbury S H. J. Am. Chem. Soc., 2012, 134(43): 18034.
[97] Diebold U. Surface Science Reports, 2003, 48(5): 53.
[98] Campbell C T. Nat. Chem., 2012, 4(8): 597.
[99] Bruix A, Rodriguez J A, Ramirez P J, Senanayake S D, Evans J, Park J B, Stacchiola D, Liu P, Hrbek J, Illas F. J. Am. Chem. Soc., 2012, 134(21): 8968.
[100] Pei G X, Liu X Y, Wang A, Li L, Huang Y, Zhang T, Lee J W, Jang B W L, Mou C Y. New J. Chem., 2014, 38(5): 2043.
[101] Du A, Chen Y, Zhu Z, Amal R, Lu G Q, Smith S C. J. Am. Chem. Soc., 2009, 131(47): 17354.
[102] Xie S, Tsunoyama H, Kurashige W, Negishi Y, Tsukuda T. ACS Catalysis, 2012, 2(7): 1519.
[103] Xing J, Jiang H B, Chen J F, Li Y H, Wu L, Yang S, Zheng L R, Wang H F, Hu P, Zhao H J,Yang H G. J. Mater. Chem. A, 2013, 1(48): 15258.
[1] 李佳烨, 张鹏, 潘原. 在大电流密度电催化二氧化碳还原反应中的单原子催化剂[J]. 化学进展, 2023, 35(4): 643-654.
[2] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.
[3] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[4] 沈树进, 韩成, 王兵, 王应德. 过渡金属单原子电催化剂还原CO2制CO[J]. 化学进展, 2022, 34(3): 533-546.
[5] 景远聚, 康淳, 林延欣, 高杰, 王新波. MXene基单原子催化剂的制备及其在电催化中的应用[J]. 化学进展, 2022, 34(11): 2373-2385.
[6] 孟鹏飞, 张笑容, 廖世军, 邓怡杰. 金属/非金属元素掺杂提升原子级分散碳基催化剂的氧还原性能[J]. 化学进展, 2022, 34(10): 2190-2201.
[7] 陈阳, 崔晓莉. 锂离子电池二氧化钛负极材料[J]. 化学进展, 2021, 33(8): 1249-1269.
[8] 刘晓旸. 高压条件下的凝聚态化学[J]. 化学进展, 2020, 32(8): 1184-1202.
[9] 吴文浩, 雷文, 王丽琼, 王森, 张海军. 单原子催化剂合成方法[J]. 化学进展, 2020, 32(1): 23-32.
[10] 朱红林, 李文英, 黎挺挺, Michael Baitinger, Juri Grin, 郑岳青. CO2电还原用氮掺杂碳基过渡金属单原子催化剂[J]. 化学进展, 2019, 31(7): 939-953.
[11] 王晓方, 胡殷, 潘启发, 杨瑞龙, 龙重, 刘柯钊. 铀氮化物晶体结构及电子结构[J]. 化学进展, 2018, 30(12): 1803-1818.
[12] 陈丕恒, 赖新春, 汪小琳. 钚及其化合物的理论研究[J]. 化学进展, 2011, 23(7): 1316-1321.
[13] 苏静, 李隽. 锕系化合物荧光光谱理论研究进展[J]. 化学进展, 2011, 23(7): 1329-1337.
[14] 王艳 陶占良 陈军. 具有18电子结构的镁基过渡金属氢化物* [J]. 化学进展, 2010, 22(01): 234-240.
[15] 孔德生,吕文华,冯媛媛,毕思玮. DSA电极电催化性能研究及尚待深入探究的几个问题*[J]. 化学进展, 2009, 21(6): 1107-1117.