English
新闻公告
More
化学进展 2015, Vol. 27 Issue (10): 1435-1447 DOI: 10.7536/PC150328 前一篇   后一篇

• 综述与评论 •

齐聚噻吩及其衍生物有机光伏材料

关丽1*, 张晓远2, 孙福强1, 姜月2, 钟一平2, 刘平2   

  1. 1. 广东药学院药科学院 广州 510006;
    2. 华南理工大学材料科学研究所 发光材料与器件国家重点实验室 广州 510640
  • 收稿日期:2015-03-01 修回日期:2015-05-01 出版日期:2015-10-15 发布日期:2015-09-10
  • 通讯作者: 关丽 E-mail:guanli@gdpu.edu.cn
  • 基金资助:
    广东省自然科学基金项目(No.S2013040013904)资助

Oligothiophene Derivatives in Organic Photovoltaic Devices

Guan Li1*, Zhang Xiaoyuan2, Sun Fuqiang1, Jiang Yue2, Zhong Yiping2, Liu Ping2   

  1. 1. School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China;
    2. State Key Laboratory of Luminescent Materials and Devices, Research Institute of Materials Science, South China University of Technology, Guangzhou 510640, China
  • Received:2015-03-01 Revised:2015-05-01 Online:2015-10-15 Published:2015-09-10
  • Supported by:
    The work was supported by the the Natural Science Foundation of Guangdong Province, China (No. S2013040013904).
齐聚噻吩及其衍生物具有良好的环境稳定性和优异的光电性能,是一类具有良好发展前景的有机功能材料。本文综述了近年来齐聚噻吩及其衍生物的发展状况,简述了其主要合成方法;根据结构将其分为两大类:一类是不含极性基团或仅含弱极性基团的齐聚噻吩衍生物,另一类是给体-受体型齐聚噻吩衍生物,并讨论了它们作为有机光伏材料的应用。给体-受体型齐聚噻吩衍生物由于分子内的电荷传输作用,其光物理和电化学性能均优于不含极性基团的齐聚噻吩,该类材料在小分子光伏器件中具有最高的光电转换效率(>10%)。文章最后简要分析了影响光伏器件性能的主要因素。
Oligothiophenes and their derivatives, possessing attractive properties such as good environmental stability and excellent photoelectric properties, are important organic functional materials which can be developed greatly. In this review, the synthesis and properties of oligothiophenes and their derivatives with a focus on applications in organic photovoltaics in recent years are discussed. According to the structure, oligothiophenes and their derivatives are divided into two categories. One category includes oligothiophenes containing nonpolar groups or weak-polar groups, and the other one includes donor-acceptor (D-A) oligothiophenes and their derivatives. The D-A oligothiophene derivatives include one dimensional, two dimensional or star-shaped molecules, self-assemble molecules, donor-acceptor dyads or triads. The oligothiophene derivatives used as acceptors in photovaitic devices are also discussed. Due to the intramolecular charge transfer effect, the photophysical and electrochemical properties of D-A oligothiophene derivatives as donors are superior to those of containing weak-polar group derivatives. The D-A oligothiophene derivatives based devices have the highest photoelectric conversion efficiency (>10%) among small molecular photovoltaic materials. Finally, the main factors that affect the photovoltaic performance of devices are briefly analysised such as HOMO and LUMO energy levels, scope of spectral absorption and film morphology, etc. The open circuit voltage (Voc) is related to the difference between the LUMO energy level of the acceptor and the HOMO energy level of the donor. The short-circuit current (Jsc) is related to the absorption range and intensity of the active layer. The morphology of the active layer can be a determining factor for the fill factor (FF) of photovoltaic devices.

Contents
1 Introduction
2 Synthesis of oligothiophene derivatives
3 Applitation of oligothiophene derivatives on organic photovoltaic devices
3.1 Low-polar oligothiophenes
3.2 Donor-accepter oligothiophene derivatives
4 Conclusion and outlook

中图分类号: 

()
[1] Spiekermann S, Smestad G. Synthetic Metals, 2001, 121: 1603.
[2] Zhang S Q, Ye L, Zhao W C, Yang B, Wang Q, Hou J H. Science China Chemistry, 2015, 58(2): 248.
[3] Pei J, Yu W L, Heeger A J, Huang W. Macromolecules, 2000, 33(7): 2462.
[4] Roncali J. Chemical Review, 1992, 92(4): 711.
[5] Ma W, Yong C, Gong X, Lee K, Heeger A J. Adv. Funct. Mater., 2005, 15(10): 1617.
[6] Ayzner A L, Wanger D D, Tassone C J, Tolbert S H, Schwartz B J. J. Phys. Chem. C, 2008, 112: 18711.
[7] Chu C W, Yang H, Hou W J, Huang J S, Li G, Yang Y. Appl. Phys. Lett., 2008, 92: 103306.
[8] Richard D, Cullough M. Adv. Funct. Mater., 1998, 10(2): 93.
[9] Armstrong N R, Carter C. Thin Solid Films, 2003, 445: 343.
[10] Kim K, Liu J, Namboothiry M A G, Carroll D L. Appl. Phys. Lett., 2007, 90: 163511.
[11] Tamao K, Sumitani K, Kumada M. J. Am. Chem. Soc., 1972, 94: 4374.
[12] Zhao M T, Singh B P, Prasad P N. J. Chem. Phys., 1988, 89 (9): 5535.
[13] Nakanishi H, Sumi N, Aso Y, Otsubo T. J. Org. Chem., 1998, 63: 8632.
[14] Albers W M. Tetrahedron, 1995, 51(13): 3895.
[15] Kosugi M, Shimizu Y, Migita T. Chem. Lett., 1977, 12: 1423.
[16] Milstein D, Stille J K. J. Am. Chem. Soc., 1978, 100: 3636.
[17] Stille J K. Angew. Chem., Int. Ed., 1986, 25: 508.
[18] Osun R M, Ortiz R P, Ruiz Delgado M C, Sakamoto Y, Suzuki T, Hernandez V, López Navarrete J T. J. Phys. Chem. B, 2005, 109: 20737.
[19] Ie Y, Umemoto Y, Okabe M, Kusunoki T, Nakayama K I, Pu Y J, Kido J, Tada H, Aso Y. Org. Lett., 2008, 10(5): 833.
[20] Henssler J T, Zhang X N, Matzger A J. J. Org. Chem., 2009, 74: 9112.
[21] Li Y, Hong X M, Collard D M, El-Sayed M A. Org. Lett., 2000, 2(15): 2385.
[22] Melucci M, Barbarella G, Zambianchi M, Di Pietro P, Bongini A. J. Org. Chem., 2004, 69: 4821.
[23] Åslund A, Sigurdson C J, Klingstedt T, Grathwohl S, Bolmont T, Dickstein D L, Glimsdal E, Prokop S, Lindgren M, Konradsson P, Holtzman D M, Hof P R, Heppner F L, Gandy S, Jucker M, Aguzzi A, Hammarström P, Nilsson K P. ACS Chem. Bio., 2009, 4(8): 673.
[24] Hanène Bedis, Fayçal Kouki, Habib Bouchriha. Appl. Phys. A, 2013, 110: 163.
[25] Niu Q F, Lu Y Q, Sun H J, Li X Y, Tao X T. Dyes and Pigments, 2013, 97: 184.
[26] Kwon J, Hong J P, Noh S, Kim T M, Kim J J, Lee C, Lee S, Hong J I. New J. Chem., 2012, 36: 1813.
[27] Gebeyehu D, Maening B, Drechsel J, Leo K, Pfeiffer M, Sol. Energy Mater. Sol. Cells, 2003, 79: 81.
[28] Azumi R, Goto M, Honda K, Matsumoto M. Bull. Chem. Soc. Jpn., 2003, 76: 1561.
[29] Shibata Y, Kono T, Komura Ni, Yoshida Y. Organic Electronics, 2013, 14: 1073.
[30] Pappenfus T M, Mann K R. Org. lett., 2002, 4(18): 3043.
[31] Shang H X, Fan H J, Liu Y, Hu W P, Li Y F, Zhan X W. J. Mater. Chem., 2011, 21: 9667.
[32] Wright I A, Findlay N J, Arumugam S, Inigo A R, Kanibolotsky A L, Zassowski P, Domagala W, Skabara P J. J. Mater. Chem. C, 2014, 2: 2674.
[33] Roquet S, Cravino A, Leriche P, Alévêque O, Frère P, Roncali J. J. Am. Chem. Soc., 2006, 128: 3459.
[34] Bader M M, Pham P T, Elandaloussi E H. Crystal Growth & Design, 2010, 10(12): 5027.
[35] Li Z, Dong Q, Li Y, Xu B, Deng M, Pei J, Zhang J, Chen F, Wen S, Gao Y, Tian W. J. Mater. Chem., 2011, 21: 2159.
[36] Lincker F, Delbosc N, Bailly S, De Bettigines R, Billon M, Pron A, Demadrille R. Adv. Funct. Mater., 2008, 18: 3444.
[37] Mayerhöffer U, Deing K, Gruss K, Braunschweig H, Meerholz K, Würthner F. Angew. Chem., Int. Ed., 2009, 48: 8776.
[38] Walker B, Tamayo A B, Dang X D, Zalar P, Seo J H, Garcia A, Tantiwiwat M, Nguyen T Q. Adv. Funct. Mater., 2009, 19: 3063.
[39] Mei J, Graham K R, Stalder R, Reynolds J R. Org. Lett. 2010, 12: 660.
[40] Steinberger S, Mishra A, Reinold E, Müller C M, Uhrich C, Pfeiffer M, Bäuerle P. Org. Lett., 2011, 13: 90.
[41] Schulze K, Uhrich C, Schüppel R, Leo K, Pfeiffer M. Adv. Mater., 2006, 18: 2872.
[42] Uhrich C, Schueppel R, Petrich A, Pfeiffer M, Leo K, Brier E, Kilickiran P, Bäuerle P. Adv. Funct. Mater., 2007, 17: 2991.
[43] Haid S, Mishra A, Uhrich C, Pfeiffer M, Bäuerle P. Chem. Mater., 2011, 23: 4435.
[44] Fitzner R, Reinold E, Mishra A, Mena-Osteritz E, Ziehlke H, Körner C, Leo K, Riede M, Weil M, Tsaryova O, WeiB A, Uhrich C, Pfeiffer M, Bäuerle P. Adv. Funct. Mater., 2011, 21: 897.
[45] Steinberger S, Mishra A, Reinold E, Levichkov J, Uhrich C, Pfeiffer M, Bäuerle P. Chem. Commun., 2011, 47: 1982.
[46] Cui C H, Min J, Ho C L, Ameribc T, Yang P, Zhao J Z, Brabec C J, Wong W Y. Chem. Commun., 2013, 49: 4409.
[47] He G R, Li Z, Wan X J, Liu Y S, Zhou J Y, Long G K, Zhang M T, Chen Y S. J. Mater. Chem., 2012, 22: 9173.
[48] He G, Li Z, Wan X, Zhou J, Long G, Zhang S, Zhang M, Chen Y. J. Mater. Chem. A, 2013, 1, 1801.
[49] Liu Y S, Wan X J, Wang F, Zhou J Y, Long G K, Tian J G, Chen Y S. Adv. Mater., 2011, 23, 5387.
[50] Lin Y Z, Ma L C, Li Y F, Liu Y Q, Zhu D B, Zhan X W, Advanced Energy Materials, 2014, 4(1), 1300626/1.
[51] Chen Y J, Li C, Zhang P, Li Y W, Yang X M, Chen L W, Tu Y F. Organic Electronics, 2013, 14: 1424.
[52] Hu J H, Liang L S, Chen T H, Liu P, Deng W J. Dyes and Pigments, 2014, 100: 158.
[53] Arnold B, Walker B, Nguyen T Q. Journal of Physics Chemistry C, 2008, 112: 11545.
[54] Li Z F, Dong Q Fg, Xu B, Cheng W D, Yao S Y, Zhang X Y, Wen S P, Li H, Dong Y J, Tian W J. Solar Energy Materials & Solar Cells, 2012, 98: 343.
[55] Leliège A, Blanchard P, Rousseau T, Roncali J. Org. Lett., 2011, 13(12): 3098..
[56] Xia P F, Feng X J, Lu J P, Movileanu R, Tao Y, Baribeau J M, Wong M S. J. Phys. Chem. C, 2008, 112: 16714.
[57] Steinberger S, Mishra A, Reinold E, Mena-Osteritz E, Müller H, Uhrich C, Pfeiffer M, Bäuerle P. J. Mater. Chem., 2012, 22: 2701.
[58] Sun Y M, Welch G C, Leong W L, Takacs C J, Bazan G C, Heeger A J. Nature Materials, 2012, 11: 44.
[59] Luponosov Y N, Min J, Ameri T, Brabec C J, Ponomarenko S A. Organic Electronics, 2014, 15(12): 3800.
[60] Mishra A, Popovic D, Vogt A, Kast H, Leitner T, Walzer K, Pfeiffer M, Mena-Osteritz E, Bäuerle P. Advan. Mater., 2014, 26(42): 7217.
[61] Li Z F; Bian J, Wang Y I, Jiang F Y, Liang G J, He P, Hou Q F, Tong J H, Liang Y, Zhong Z C. Solar Energy Materials & Solar Cells, 2014, 130: 336.
[62] Weidelener M, Wessendorf C D, Hanisch J, Ahlswede E, Götz G, Linde M, Schulz G, Mena-Osteritz E, Mishra A, Bäuerle P. Chemical Communications, 2013, 49(92): 10865.
[63] Zerdan R B, Shewmon N T, Zhu Y, Mudrick J P, Chesney K J, Xue J G, Castellano R K. Adv. Funct. Mater., 2014, 24(38): 5993.
[64] Wessendorf C D, Schulz G L, Mishra A, Kar P, Ata I, Weidelener M, Urdanpilleta M, Hanisch J, Mena-Osteritz E, Lindén M, Ahlswede E, Bäuerle P. Adv. Energy Mater., 2014, 4: 1400266.
[65] Kan B, Zhang Q, Li M, Wan X, Ni W, Long G, Wang Y, Yang X, Feng H, Chen Y. J. Am. Chem. Soc., 2014, 136: 15529.
[66] Zhang Q, Kan B, Liu F, Long G, Wan X, Chen X, Zuo Y, Ni W, Zhang H, Li M, Hu Z, Huang F, Cao Y, Liang Z, Zhang M, Russell T P, Chen Y. Nat. Photonics, 2015, 9: 35.
[67] Zuo Y, Zhang Q, Wan X, Li M, Zhang H, Li C, Chen Y. Organic Electronics, 2015, 19: 98.
[68] Kan B, Li M, Zhang Q, Liu F, Wan X, Wang Y, Ni W, Long G, Yang X, Feng H, Zuo Y, Zhang M, Huang F, Cao Y, Russell T P, Chen Y. J. Am. Chem. Soc, DOI: 10.1021/jacs.5b00305
[69] Rance W L, Rupert B L, Mitchell W J, Köse M E, Ginley D S, Shaheen S E., Rumbles G, Nikos K. J. Phys. Chem. C, 2010, 114: 22269.
[70] Zhang W F, Meng G NG, Tam H L, Wong M S, Zhu F R. J. Poly. Sci. Part A: Polymer Chemistry, 2011, 49: 1865.
[71] Lincker F, Heinrich B Bettignies R D, Rannou P, Pécaut J, Grévin B, Pron A, Donnio B, Demadrille R. J. Mater. Chem., 2011, 21: 5238.
[72] Kylberg W, Zhang Y, Aebersold A, Castro F A d, Geiger T, Heier J, Kuster S, Ma C Q, Bäuerle P, Nüesch F, Tisserant J N, Hany R. Organic Electronics, 2012, 13: 1204.
[73] Zhang J, Deng D, He C, He Y J, Zhang M J, Zhang Z G, Zhang Z J, Li Y F. Chem. Mater. 2011, 23: 817.
[74] Lin Y Z, Zhang Z G, Bai H T, Li Y F, Zhan X W. Chem. Commun., 2012, 48: 9655.
[75] Shang H X, Fan H J, Liu Y, Hu W P, Li Y F, Zhan X W. Adv. Mater., 2011, 23: 1554.
[76] Shen S L, G L, He C, Zhang Z J, Sun Q J, Li Y F. Organic Electronics, 2013, 14(3): 875.
[77] Min J, Luponosov Y N, Baran D, Chvalun S N, Shcherbina M A, Bakirov A V, Dmitryakov P V, Peregudova S M, Kausch-Busies N, Ponomarenko S A, Ameri T, Brabec C J. J. Mater. Chem. A, 2014, 2(38): 16135.
[78] Wong W W H, Ma C Q, Pisula W, Mavrinskiy A, Feng X L, Seyler H, Jones D J, Müllen K, Bäuerle P, Holmes A B. Chem. Eur. J., 2011, 17: 5549.
[79] Takemoto K, Karasawa M, Kimura M. ACS Appl. Mater. Interfaces, 2012, 4: 6289.
[80] Mei J G, Graham K R, Stalder R, Tiwari S P, Cheun H, Shim J, Yoshio M, Nuckolls C, Kippelen B, Castellano R K, Reynolds J R. Chem. Mater., 2011, 23: 2285.
[81] Siram R B K, Tandy K, Horecha M, Formanek P, Stamm M, Gevorgyan S, Krebs F C, Kiriy A, Meredith P, Burn P L, Namdas E B, Patil S. J. Phys. Chem. C, 2011, 115: 14369.
[82] Izawa S, Hashimoto K, Tajima K. Syn. Meta., 2012, 162: 2201.
[83] Chen T L, Zhang Y, Smith P, Tamayo A, Liu Y, Ma B. ACS Appl. Mater. Interfaces, 2011, 3: 2275.
[84] Nicolaidis N C, Routley B S, Holdsworth J L, Belcher W J, Zhou X, Dastoor P C, J. Phys. Chem. C, 2011, 115: 7801.
[85] Arbogast J W, Foote C S. J. Am. Chem. Soc., 1991, 113: 8886.
[86] Xiao Z, Ye G, Liu Y, Chen S, Peng Q, Zuo Q Q, Ding L M. Angew. Chem. Int. Ed., 2012, 51: 9038.
[87] Wang C G, Chen W P, Chen S Y, Zhao S S, Zhang J Y, Qiu D L, Wang Y. New J. Chem., 2012, 36: 1788.
[88] Ahmed E , Ren G, Kim F S, Hollenbeck E C, Jenekhe S A. Chem. Mater., 2011, 23: 4563.
[89] Aoyagi K, Shoji Y, Otsubo S, Kawauchi S, Ueda M, Matsumoto H, Higashihara T. Bulletin of the Chemical Society of Japan, 2014, 87(10): 1083.
[90] Liu Q, Zhan H, Ho C L, Dai F R, Fu Y, Xie Z, Wang L, Li J H, Yan F, Huang S P, Wong W Y. Chemistry-an Asian Journal, 2013, 8(8): 1892.
[91] Montcada N F, Pelado B, Viterisi A, Albero J, Coro J, de la Cruz P, Langa F, Palomares E. Organic Electronics, 2013, 14(11): 2826.
[92] Li P C, Tong H, Ding J Q, Xie Z Y, Wang L X. J. Mater. Chem. A: Materials for Energy and Sustainability, 2013, 1(31): 8805.
[93] Ni W, Li M, Kan B, Zuo Y, Zhang Q, Long G, Feng H, Wan X, Chen Y. Organic Electronics, 2014, 15: 2285.
[94] Li Z F, Pei J N, Li Y W, Xu B, Deng M, Liu Z Y, Li H, Lu H G, Li Q, Tian W J. J. Phys. Chem. C, 2010, 114: 18270.
[95] Zhao G J, He Y J, He C, Fan H J, Zhao Y, LiY F. Solar Energy Materials & Solar Cells, 2011, 95: 704.
[96] Gupta A, Ali A, Bilic A, Gao M, Hegedus K, Singh B, Watkins S E, Wilson G J, Bach U, Evans R A. Chem. Commun., 2012, 48: 1889.
[97] Sasaki K, Shibata Y, Lu M, Yoshida Y, Azumi R, Ueda Y. Advances in Materials Physics and Chemistry, 2013, 3(2): 185.
[98] Kwok E C H, Tsang D P K, Chan M Y, Yam V W W. Chem. Eur. J., 2013, 19: 2757.
[1] 薛朝鲁门, 刘宛茹, 白图雅, 韩明梅, 莎仁, 詹传郎. 非富勒烯受体DA'D型稠环单元的结构修饰及电池性能研究[J]. 化学进展, 2022, 34(2): 447-459.
[2] 杜宇轩, 江涛, 常美佳, 戎豪杰, 高欢欢, 尚玉. 基于非稠环电子受体的有机太阳能电池材料与器件[J]. 化学进展, 2022, 34(12): 2715-2728.
[3] 徐翔, 李坤, 魏擎亚, 袁俊, 邹应萍. 基于非富勒烯小分子受体Y6的有机太阳能电池[J]. 化学进展, 2021, 33(2): 165-178.
[4] 王露, 霍志鹏, 易锦馨, Ahmed Alsaedi, Tasawar Hayat, 戴松元. 有机-无机杂化钙钛矿太阳电池中的钙钛矿层功能添加剂[J]. 化学进展, 2017, 29(8): 870-878.
[5] 吴阳, 王再禹, 孟向毅, 马伟. 同步辐射共振软X射线散射对有机太阳能电池中活性层形貌的解析[J]. 化学进展, 2017, 29(1): 93-101.
[6] 谢祥, 吕文珍, 陈润锋, 黄维. 有机太阳能电池给受体材料界面的微纳结构调控[J]. 化学进展, 2016, 28(11): 1591-1600.
[7] 宋成杰, 王二静, 董兵海, 王世敏. 非富勒烯类有机小分子受体材料[J]. 化学进展, 2015, 27(12): 1754-1763.
[8] 杨雷, 程涛, 曾文进, 赖文勇, 黄维. 导电聚合物薄膜的喷墨打印制备及其光电器件[J]. 化学进展, 2015, 27(11): 1615-1627.
[9] 赖衍帮, 丁益民, 王洪宇. 苯并[1,2-b:4,5-b’]二噻吩的结构修饰及在有机光伏材料中的应用[J]. 化学进展, 2014, 26(10): 1673-1689.
[10] 腊明,刘平,邓文基. 有机噻吩类衍生物作为电致变色材料*[J]. 化学进展, 2009, 21(6): 1268-1274.
[11] 胡振锟,薛敏钊,刘燕刚. 纳米色料的制备及应用[J]. 化学进展, 2006, 18(01): 66-73.