English
新闻公告
More
化学进展 2015, Vol. 27 Issue (7): 806-817 DOI: 10.7536/PC150149 前一篇   后一篇

• 综述与评论 •

氮配位过渡金属配合物在硅氢加成反应中的应用研究

陈峰, 白赢, 厉嘉云*, 肖文军, 彭家建*   

  1. 杭州师范大学有机硅化学及材料技术教育部重点实验室 杭州 311121
  • 收稿日期:2015-01-01 修回日期:2015-03-01 出版日期:2015-07-15 发布日期:2015-06-15
  • 通讯作者: 厉嘉云, 彭家建 E-mail:jjpeng@hznu.edu.cn;jiayun1980@hznu.edu.cn
  • 基金资助:
    国家自然科学基金项目 (No.21203049, 21303034) 和浙江省自然科学基金项目(No.LY14B030007)资助

The Application on Nitrogen-Coordinating Transition Metal Complexes on Hydrosilylation

Chen Feng, Bai Ying, Li Jiayun*, Xiao Wenjun, Peng Jiajian*   

  1. Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education,Hangzhou Normal University, Hangzhou 311121, China
  • Received:2015-01-01 Revised:2015-03-01 Online:2015-07-15 Published:2015-06-15
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No.21203049, 21303034) and the Natural Science Foundation of Zhejiang Province, China (No.LY14B030007).
氮配位过渡金属配合物在近十几年来得到迅速的发展。 通过设计不同的含氮配体与不同过渡金属进行配位形成的氮配位过渡金属配合物,在硅氢加成反应中有很大应用研究价值。本文综述了氮配位铑、铁、铼、钴、锌等过渡金属配合物在酮或者烯烃的硅氢加成反应中的新进展。二 NFDA1 唑啉及二氢吡咯等含氮配体的优化设计必将大大促进含氮铁、铼、钴配合物在酮或者亚胺的硅氢加成反应中的应用。
The study of nitrogen-coordinating transition metal complexes has been a significant development in the recent decades. Designing different excellent nitrogen ligands coordinated with various transition metal complexes, which its of great value in hydrosilylation reaction. In this paper, the latest progress of the application in nitrogen-coordinating transition metal(Rh, Fe, Re, Co, Zn and so on)complexes to ketone hydrosilylation or alkene hydrosilylation is reviewed. The design of optimized bisoxazolines or dihydropyrrolo nitrogen-containing ligands will greatly facilitate the successful development of nitrogen-containing iron, rhenium, cobalt complexes in the hydrosilylation of ketone or imine.

Contents
1 Introduction
2 The application on nitrogen-coordinating transition metal complexes on hydrosilylation
2.1 The application on nitrogen-coordinating rhodium complexes on hydrosilylation
2.2 The application on nitrogen-coordinating iron complexes on hydrosilylation
2.3 The application on nitrogen-coordinating rhenium complexes on hydrosilylation
2.4 The application on nitrogen-coordinating cobalt complexes on hydrosilylation
2.5 The application on nitrogen-coordinating zinc complexes on hydrosilylation
2.6 The application on nitrogen-coordinating titanium complexes on hydrosilylation
3 The study of mechanism
4 Conclusion

中图分类号: 

()
[1] Marciniec B. Comprehensive Handbook on Hydrosilylation. 2nd ed. NY: Pergamon, 1992. 754.
[2] Ojima I, Li Z, Zhu J. The Chemistry of Organic Silicon Compounds (Eds.Rappoport Z, Apeloig Y). Amsterdam: Wiley, 1998. 29.
[3] Marciniec B, Silicon Chemistry. 2nd ed. NY: CrossRef. 2002.155.
[4] Marciniec B. New J. Chem., 1997, 21: 815.
[5] Marciniec B, Cornils B. Applied Homogeneous Catalysis with Organometallic Compounds. (Eds.Herrman W). Amsterdam: Wiley-VCH, 2002. 491.
[6] Littke A F, Dai C, Fu G C. J. Am. Chem. Soc., 2000, 122: 4020.
[7] Kirchhoff J H, Dai C, Fu G C. Angew. Chem. Int. Ed. Engl., 2002, 41: 1945.
[8] Littke A F, Fu G C. Angew. Chem. Int. Ed. Engl., 2002, 41: 4176.
[9] Kataoka N, Shelby Q, Stambuli J P, Hartwig J F. J. Organomet. Chem., 2002, 67: 5553.
[10] Walker S D, Barder T E, Martinelli J R, Buchwald S L. Angew. Chem. Int. Ed., 2004, 43: 1871.
[11] Goto K, Okumura T, Kawashima T. Chem. Lett., 2001, 12: 1258.
[12] Goto K, Nagahama M, Mizushima T, Shimada K, Kawashima T, Okazaki R.Org. Lett., 2001, 3: 3569.
[13] Ohzu Y, Goto K, Kawashima T. Angew. Chem. Int. Ed., 2003, 42: 5714.
[14] Naiki M, Shirakawa S, Kon-i K, Kondo Y, Maruoka K. Tetrahedron. Lett., 2001, 42: 5467.
[15] Niyomura O, Iwasawa T, Sawada N, Tokunaga M,Obora Y, Tsuji Y.Organometallics, 2005, 24: 3468.
[16] Hill J E, Nile T A. J. Organomet. Chem., 1977, 137: 293.
[17] Lappert M F. Transition Met. Chem., 1981, 287.
[18] Lappert M F, Maskell R K. J. Organomet. Chem., 1984, 264: 217.
[19] 厉嘉云(Li J Y), 彭家建(Peng J J), 白赢(Bai Y), 胡应乾(Hu Y Q), 张国栋(Zhang G D), 来国桥(Lai G Q).有机化学(Chin. J.Org.Chem), 2009, 12: 1938.
[20] Nishiyama H. Comprehensive Chirality. Nagoya University, 2012.
[21] Delepine M. Bull. Soc. Chim. France., 1929, 45: 235.
[22] Delepine M. Compl. Rend., 1953, 236: 559.
[23] Brunner H, Kuerzinger A. J. Organomet.Chem., 1988, 346: 413.
[24] Brunner H, Riepl G, Weitzer H. Angew. Chem. Int. Ed. Engl., 1983, 22: 331.
[25] Nishiyama H, Sakaguchi H, Nakamura T. Organometallics, 1989, 8: 846.
[26] Nishiyama H, Kondo M, Nakamura T, Itoh K. Organometallic, 1991, 10: 500.
[27] Michael E W, Steven A S. Inorg. Chim. Acta, 1990, 175: 13.
[28] Brunner H, Nherr M S, Zabel M. Tetrahedron. Asymmetry., 2003, 14: 1115.
[29] Brunner H, Henning F, Weber M. Tetrahedron. Asymmetry., 2002, 13: 37.
[30] Takahiro S, Teruyuki M, Norihiro T. Polyhedron, 2010, 29: 425.
[31] Teruyuki M, Takahiro S, Hideaki M, Norihiro T. Organometallic, 2014, 33: 1341.
[32] Salim T A, Hadi J S, Al-Nasir E A, Hassen M A. J. Sci. Res., 2010, 2: 501.
[33] Kharasch M S, Fields E K. J. Am. Chem. Soc., 1941, 63: 2316.
[34] Bolm C, Legros J, Le Paih J, Zani L. Chem. Rev., 2004, 104: 6217.
[35] Fuerstner A, Martin R. Chem. Lett., 2005, 34: 624.
[36] Plietker B.Iron Catalysis in Organic Chemistry. (Eds.Plietker B). Amsterdam: Wiley-VCH, 2008. 125.
[37] Sherry B D, Fuerstner A. Chem. Res., 2008, 41: 1500.
[38] Correa A, Garcia M O, Bolm C.Chem. Soc. Rev., 2008, 37: 1108.
[39] Wu J Y, Benjamin N S, Tobias R. J. Am. Chem. Soc., 2010, 132: 13214.
[40] Plietker B, Dieskau A, Mows K, Jatsch A. Angew. Chem. Int. Ed., 2008, 47: 198.
[41] Holzwarth M, Dieskau A, Tabassam M, Plietker B. Angew. Chem. Int. Ed., 2009, 48: 7251.
[42] Boddien A, Loges B, Gartner F, Torberg C, Fumino K, Junge H, Ludwig R, Beller M. J. Am. Chem. Soc., 2010, 132: 8924.
[43] Carbonaro A, Greco A, Dall'A G. J. Organomet. Chem., 1969, 20: 177.
[44] Knoelker H J. Chem. Rev., 2000, 100: 2941.
[45] Bart S C, Lobkovsky E, Chirik P J. J. Am. Chem. Soc., 2004, 126: 13794.
[46] Russell S K, Darmon J M, Lobkovsky E, Chirik P J. Inorg. Chem., 2010, 49: 2782.
[47] Tondreau A M, Atienza C C H, Weller K J, Nye S A, Lewis K M, Delis J G P, Chirik P J. Science, 2012, 335: 567.
[48] Tondreau A M, Atienza C C H, Darmon J M, Milsmann C, Hoyt H M, Weller J, Nye S A, Lewis K M, Boyer J, Delis J G P. Organometallic, 2012, 31: 4886.
[49] Brunner H, Roetzer M. J. Organomet. Chem., 1992, 425: 119.
[50] Nishiyama H, Furuta A. Chem. Commun., 2007, 7: 760.
[51] Langlotz B K,Wadepohl H, Gade L H. Angew. Chem. Int. Ed., 2008, 47: 4670.
[52] Tondreau A M, Darmon J M, Wile B M. Organometallics, 2009, 28: 3928.
[53] Inagaki T, Phong L T, Furuta A, Ito J, Nishiyama H. Chem. Eur. J., 2010, 16: 3090.
[54] Nolin K A, Ahn R W, Kobayashi Y, Kennedy-Smith J J, Toste F D. Chem. Eur. J., 2010, 16: 9555.
[55] Mimoun H. J. Org. Chem., 1999, 64: 2582.
[56] Mimoun H, de Laumer J Y, Giannini L, Scepelliti R, Floriani C. J. Am. Chem. Soc., 1999, 121: 6158.
[57] Bette V, Mortreux A, Lehmann C W, Carpentier J F. Chem. Commun., 2003, 3: 332.
[58] Bette V, Mortreux A, Savoia D, Carpentier J F. Tetrahedron., 2004, 60: 2837.
[59] Mastranzo V M, Quintero L, de Parrodi C A, Juaristi E, Walsh P J. Tetrahedron, 2004, 60: 1781.
[60] Gerard S, Pressel Y, Riant O. Tetrahedron. Asymmetry, 2005, 16: 1889.
[61] Bandini M, Melucci M, Piccinelli F. Chem. Commun., 2007, 43: 4519.
[62] Liu S, Peng J J, Yang H, Bai Y, Li J Y, Lai G Q. Tetrahedron, 2012, 68: 1371.
[63] Ireland T, Fontanet F, Tchao G G. Tetrahedron Lett., 2004, 45: 4383.
[64] Park B M, Mun S, Yun J. Adv. Synth. Catal., 2006, 348: 1029.
[65] Cozzi P G, Floriani C, Angiola C V, Rizzoli C. Inorg. Chem., 1995, 34: 2921.
[66] Bandini M, Cozzi P G, Negro L, Achille U R. Chem. Commun., 1999, 1: 39.
[67] Bandini M, Bernardi F, Bottoni A, Cozzi P G, Miscione G P, Achille U R. Eur. J. Org. Chem., 2003, 15: 2972.
[68] Brunner H, Becker R, Riepl G A. Organometallics, 1984, 3: 1354.
[69] Lipshutz B H, Chrisman W, Noson K. J. Organomet. Chem., 2001, 624: 367.
[70] Lipshutz B H, Noson K, Chrisman W T. J. Am. Chem. Soc., 2001, 123: 12917.
[71] Yun J, Buchwald S L. Org. Lett., 2001, 3: 1129.
[72] Lipshutz B H, Lower A, Noson K. Org. Lett., 2002, 4: 4045.
[73] Lipshutz B H, Lower A, Kucejko R J, Noson K. Org. Lett., 2006, 8: 2969.
[74] Issenhuth J T, Dagorne S, Bellemin-Laponnaza S. Adv. Synth. Catal., 2006, 348: 1991.
[75] Lee D W, Yun J. Tetrahedron Lett., 2004, 45: 5415.
[76] Junge K, Wendt B, Addis D, Zhou S, Das S, Beller M. Chem. Eur. J., 2010, 16: 68.
[77] Sirol S, Courmarcel J M, Ostefai N, Riant O. Org. Lett., 2001, 3: 4111.
[78] Zhang X C, Wu Y, Yu F, Wu F F, Wu J, Chand A S C. Chem. Eur. J., 2009, 15: 5888.
[79] Zhang X C, Wu F F, Li S J, Zhou J N, Wu J, Li N, Fang W J, Lam K H, Chand A S C. Adv. Synth. Catal., 2011, 353: 1457.
[80] Issenhuth J T, Notter F P, Dagorne S, Dedieu A, Bellemin- Laponnaz S. Eur. J. Inorg. Chem., 2010, 4: 529.
[81] Bantu B, Wang D, Wurst K, Buchmeiser M R. Tetrahedron, 2005, 61: 12145.
[82] Albright A E, Gawley R. J. Am. Chem. Soc., 2011, 133: 19680.
[83] 陈玲珍 (Chen L Z), 彭家建 (Peng J J), 厉嘉云 (Li J Y), 白赢 (Bai Y), 邱化玉(Qiu H Y), 来国桥 (Lai G Q). 有机化学(Chin. J. Org. Chem), 2008, 28: 761.
[84] Bell N A, Moseley P T, Shearer H M M, Spencer C B. Chem.Commun., 1980, 8: 359.
[85] Bell N A, Kassyk A L. Inorg. Chim. Acta, 1996, 250: 345.
[86] Zuo Z Y, Sun H J, Wang L, Li X Y. Dalton Trans., 2014, 43: 11716.
[87] Peterson E, Khalimon A Y, Simionescu R, Kuzmina L G, Howard J A K, Nikonov G I. J. Am. Chem. Soc., 2009, 131: 908.
[88] Shambayati S, Crowe W E, Schreiber S L. Angew. Chem. Int. Ed. Engl., 1990, 29: 256.
[1] 李佳烨, 张鹏, 潘原. 在大电流密度电催化二氧化碳还原反应中的单原子催化剂[J]. 化学进展, 2023, 35(4): 643-654.
[2] 邵月文, 李清扬, 董欣怡, 范梦娇, 张丽君, 胡勋. 多相双功能催化剂催化乙酰丙酸制备γ-戊内酯[J]. 化学进展, 2023, 35(4): 593-605.
[3] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.
[4] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[5] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[6] 王乐壹, 李牛. 从铜离子、酸中心与铝分布的关系分析不同模板剂制备Cu-SSZ-13的NH3-SCR性能[J]. 化学进展, 2022, 34(8): 1688-1705.
[7] 杨启悦, 吴巧妹, 邱佳容, 曾宪海, 唐兴, 张良清. 生物基平台化合物催化转化制备糠醇[J]. 化学进展, 2022, 34(8): 1748-1759.
[8] 贾斌, 刘晓磊, 刘志明. 贵金属催化剂上氢气选择性催化还原NOx[J]. 化学进展, 2022, 34(8): 1678-1687.
[9] 张明珏, 凡长坡, 王龙, 吴雪静, 周瑜, 王军. 以双氧水或氧气为氧化剂的苯羟基化制苯酚的催化反应机理[J]. 化学进展, 2022, 34(5): 1026-1041.
[10] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[11] 刘洋洋, 赵子刚, 孙浩, 孟祥辉, 邵光杰, 王振波. 后处理技术提升燃料电池催化剂稳定性[J]. 化学进展, 2022, 34(4): 973-982.
[12] 沈树进, 韩成, 王兵, 王应德. 过渡金属单原子电催化剂还原CO2制CO[J]. 化学进展, 2022, 34(3): 533-546.
[13] 楚弘宇, 王天予, 王崇臣. MOFs基材料高级氧化除菌[J]. 化学进展, 2022, 34(12): 2700-2714.
[14] 景远聚, 康淳, 林延欣, 高杰, 王新波. MXene基单原子催化剂的制备及其在电催化中的应用[J]. 化学进展, 2022, 34(11): 2373-2385.
[15] 孟鹏飞, 张笑容, 廖世军, 邓怡杰. 金属/非金属元素掺杂提升原子级分散碳基催化剂的氧还原性能[J]. 化学进展, 2022, 34(10): 2190-2201.