English
新闻公告
More
化学进展 2022, Vol. 34 Issue (2): 241-258 DOI: 10.7536/PC210609 前一篇   后一篇

• 综述 •

微纳多孔聚合物薄膜的制备与应用

付素芊1,2, 汪英1,2, 刘凯1,2, 贺军辉1,*()   

  1. 1 中国科学院理化技术研究所 北京 100190
    2 中国科学院大学 北京 100049
  • 收稿日期:2021-06-09 修回日期:2021-08-26 出版日期:2022-02-20 发布日期:2021-12-02
  • 通讯作者: 贺军辉
  • 基金资助:
    国家重点研发计划(2019QY(Y)0503); 国家重点研发计划(2017YFA0207102); 国家自然科学基金项目(91963104)

Fabrication and Applications of Micro/Nano-Porous Polymer Films

Suqian Fu1,2, Ying Wang1,2, Kai Liu1,2, Junhui He1()   

  1. 1 Technical Institute of Physics and Chemistry, Chinese Academy of Sciences,Beijing 100190, China
    2 University of Chinese Academy of Sciences,Beijing 100049, China
  • Received:2021-06-09 Revised:2021-08-26 Online:2022-02-20 Published:2021-12-02
  • Contact: Junhui He
  • Supported by:
    National Key Research and Development Program of China(2019QY(Y)0503); National Key Research and Development Program of China(2017YFA0207102); National Natural Science Foundation of China(91963104)

膜技术在化学技术中占有重要地位,并被广泛应用于生产生活中。随着薄膜技术的不断发展,如何制备获得孔径和分布可控、机械性能优异、功能多样性的多孔聚合物薄膜成为了一个亟待解决的问题。相对于无孔致密聚合物薄膜而言,微纳多孔聚合物薄膜一般密度较低、质轻、比表面积高,并且具有隔音隔热、渗透性好、可塑性强的特点。本综述首先对微纳多孔聚合物薄膜的制备方法进行了总结,包括模板法(硬模板和软模板)、相分离法、静电纺丝、刻蚀法以及其他一些方法。然后阐述了对多孔聚合物薄膜中渗透膜的结构及其相关性能表征测试方法。接着对多孔渗透膜在气体分离、能源、环境和生物工程等方面应用进行了归纳。最后,对当前微纳多孔聚合物薄膜制备方法中存在的缺点与挑战进行了总结,并对其未来的创新应用提出了展望。

Membrane technology occupies an important position in chemical technology and is widely used in varied fields of industry and daily life. With the continuous development of thin film technology, the preparation of porous polymer films with controlled pore size and size distribution, excellent mechanical properties and functional versatility has become an urgent problem to be solved. Compared to non-porous dense polymer films, micro- and nanoporous polymer films generally have lower density, lighter weight, higher specific surface area, and feature acoustic and thermal insulation, good permeability and high plasticity. This review begins with a summary of the methods used to prepare micro/nano-porous polymer films, including template methods (hard and soft templates), phase separation, electrostatic spinning, etching and some other methods. The methods for characterizing the structure and related properties of membranes in porous polymer films are also introduced. The applications of porous permeable membranes are then summarized in gas separation, energy, environmental engineering and bioengineering. Finally, the drawbacks and challenges of current methods for the preparation of micro- and nanoporous polymer films are summarized and an outlook is given on their future innovative applications.

Contents

1 Introduction

2 Design and fabrication of micro/nano-porous polymer films

2.1 Template methods

2.2 Electrospinning

2.3 Liquid-liquid phase separation

2.4 Etching methods

2.5 Other methods

3 Structure and properties characterization of micro/nano-porous polymer films

3.1 Structure characterization

3.2 Properties characterization

4 Applications of micro/nano-porous polymer films

4.1 Gas separation

4.2 Environmental engineering

4.3 Energy fields

4.4 Biomedical engineering

5 Conclusion and outlook

()
图1 膜的主要类型示意图[2]
Fig. 1 Schematic diagrams of the principal types of membranes[2]
表1 各类多孔膜制备方法的优缺点
Table 1 Advantages and disadvantages of various porous membrane preparation methods
图2 (a) 硬模板在制备多孔聚合物薄膜中的应用[3];(b)胶体颗粒作为硬模板产生纳米孔膜[70]
Fig. 2 (a) Use of hard templates in the manufacture of porous polymer films[3]; (b) colloidal particles as hard-template to produce nanoporous membranes[70]
图3 (a) 采用可固化聚合物和黑糖粉制备多孔聚合物膜[72]; (b) 利用胶印原理制备多孔聚合物膜[75]
Fig. 3 (a) Curable polymer and black sugar powder were used to create the porous polymer membrane[72]; (b) porous polymeric membranes prepared using the principles of offset printing[75]
图4 乳化液初始状态对多孔结构和性能的影响[82]
Fig. 4 Impact of the initial state of emulsion on porous structure and properties[82]
图5 (a,b) 垂直静电纺丝装置,(c) 水平静电纺丝装置,(d) 混合电纺,(e) 同轴电纺,(f) 乳液电纺,(g) 无针电纺[5,84]
Fig. 5 (a, b) Vertical set up and (c) horizontal set up of electrospinning apparatus (d) blend electro-spinning, (e) coaxial electro-spinning, (f) emulsion electro-spinning, (g) needleless electro-spinning[5,84]
图6 (a)用于中空纤维膜制备的间歇式挤出装置[89];(b) HDPE/PE-b-PEG微孔膜制备装置方案[90]
Fig. 6 (a) Schematic diagram of batch-type extrusion apparatus for hollow fiber membranes preparation[89]; (b) scheme of membrane preparation set-up[90]
图7 (a) 通过非溶剂诱导相分离制备多孔薄膜[7];(b) 聚酰亚胺多孔膜的新旧合成方法与表征[91];(c) 改性聚醚砜膜在超滤过程中通量随时间的变化(pH= 6.3);(d) pH对渗透率的影响[92]
Fig. 7 (a) Preparation of membranes by nonsolvent induced phase separation[7]; (b) original method and new method for synthesis of porous polyimide membrane[91]; (c) time-dependent flux of modified PES membranes during ultrafiltration process (pH=6.3);(d) pH-dependence permeability of water[92]
图8 VIPS 处理装置示意图[95]
Fig. 8 Schematic of the VIPS treatment set-up[95]
图9 (a) 硅橡胶膜表面孔隙形成过程[9];(b) 蒸发诱导相分离用于调控聚合物薄膜内部的孔隙分布[46]; (c) 阶层多孔聚偏氟乙烯-共-六氟丙烯涂层的制备[97]
Fig. 9 (a) Schematic illustration for the pore formation process in the surface of silicone rubber membrane[9]; (b) tailoring pore distribution in polymer films via evaporation induced phase separation[46]; (c) fabricating hierarchically porous poly(vinylidene fluoride-co-hexafluoropropene) coatings[97]
图10 多孔SPES膜的形成过程[99]
Fig. 10 Illustration for the formation process of porous SPES membrane[99]
图11 冷冻干燥制备多孔材料[100]。(a)先将小瓶中的溶液冷冻在低温浴中,(b)冷冻干燥通过升华除去致孔剂后得到多孔材料
Fig. 11 Freeze-drying for the preparation of porous materials[100]. (a) A solution in a vial is first frozen in a cold bath and (b) the porous material is obtained after freeze-drying to remove the porogen via sublimation
图12 表面选择性蚀刻原理图[103]
Fig. 12 Schematic diagram for surface selective etching[103]
图13 (a)膜气体分离的主要工业应用[166];(b)气体分离多孔膜渗透机理[2]
Fig. 13 (a) Main industrial applications of membrane gas separation;(b) mechanisms for permeation of gases through porous gas separation membranes
图14 各种膜工艺的应用范围[173]
Fig. 14 Application range of various membrane processes[173]
图15 基于非均质结构离子二极管型膜的盐度梯度能量发生器[187]
Fig. 15 Salinity gradient energy generator based on ionic-diode-type membrane with heterogeneous structure[187]
图16 (a)通过引流过量的生物液体来促进伤口愈合的自泵式敷料的设计方案[17];(b)溶剂沉淀法改性CMCTS-g-PAA高吸水性树脂创面敷料的机制[195]
Fig. 16 (a) Proposed design of the self-pumping dressing for wound healing promotion by draining excessive biofluid[17]; (b) Modification mechanism of CMCTS-g-PAA superabsorbent polymer by solvent precipitation method[195]
[1]
Park H B, Kamcev J, Robeson L M, Elimelech M, Freeman B D. Science, 2017, 356(6343): 356.

doi: 10.1126/science.356.6336.356     URL    
[2]
Baker R W. Membrane Technology and Applications. John Wiley & Sons: 2012.
[3]
Stucki M, Loepfe M, Stark W J. Adv. Eng. Mater., 2018, 20(1): 1700611.

doi: 10.1002/adem.v20.1     URL    
[4]
Hou C L, Zhang X, Li Y F, Zhou G L, Wang J T. J. Membr. Sci., 2018, 550: 136.

doi: 10.1016/j.memsci.2017.12.067     URL    
[5]
Parham S, Kharazi A Z, Bakhsheshi-Rad H R, Ghayour H, Ismail A F, Nur H, Berto F. Materials, 2020, 13(9): 2153.

doi: 10.3390/ma13092153     URL    
[6]
Liu M, Liu S H, Xu Z L, Wei Y M, Yang H. Front. Chem. Sci. Eng., 2016, 10(1): 57.

doi: 10.1007/s11705-016-1561-7     URL    
[7]
Wang D M, Lai J Y. Curr. Opin. Chem. Eng., 2013, 2(2): 229.

doi: 10.1016/j.coche.2013.04.003     URL    
[8]
Tan X M, Rodrigue D. Polymers, 2019, 11(7): 1160.

doi: 10.3390/polym11071160     URL    
[9]
Zhao J, Luo G X, Wu J, Xia H S. ACS Appl. Mater. Interfaces, 2013, 5(6): 2040.

doi: 10.1021/am302929c     URL    
[10]
Klein R J, Celina M C, Lenhart J L. J. Appl. Polym. Sci., 2010, 117: 3300.
[11]
Jung S Y, Ko S Y, Park J O, Park S. J. Intell. Mater. Syst. Struct., 2017, 28(11): 1514.

doi: 10.1177/1045389X16667550     URL    
[12]
Tiwari A, Sancaktar E. J. Membr. Sci., 2018, 552: 357.

doi: 10.1016/j.memsci.2018.02.017     URL    
[13]
Zhang H, Cooper A I. Adv. Mater., 2007, 19(11): 1529.

doi: 10.1002/(ISSN)1521-4095     URL    
[14]
Cooper A I. Adv. Mater., 2003, 15(13): 1049.

doi: 10.1002/adma.200300380     URL    
[15]
Xiao Z Y, Zhang M H, Fan W D, Qian Y Y, Yang Z D, Xu B, Kang Z X, Wang R M, Sun D F. Chem. Eng. J., 2017, 326: 640.

doi: 10.1016/j.cej.2017.06.023     URL    
[16]
Zheng B N, Lin X D, Zhang X C, Wu D C, Matyjaszewski K. Adv. Funct. Mater., 2020, 30(41): 1907006.

doi: 10.1002/adfm.v30.41     URL    
[17]
Shi L X, Liu X, Wang W S, Jiang L, Wang S T. Adv. Mater., 2019, 31:1804187.
[18]
Lee J Y, Lee Y M, Bhattacharya B, Nho Y C, Park J K. Electrochimica Acta, 2009, 54(18): 4312.

doi: 10.1016/j.electacta.2009.02.088     URL    
[19]
Jeon G, Yang S Y, Kim J K. J. Mater. Chem., 2012, 22(30): 14814.

doi: 10.1039/c2jm32430j     URL    
[20]
Stamatialis D F, Papenburg B J, GironÉs M, Saiful S, Bettahalli S N M, Schmitmeier S, Wessling M. J. Membr. Sci., 2008, 308(1/2): 1.

doi: 10.1016/j.memsci.2007.09.059     URL    
[21]
Chmiel H, Strathmann H, Streicher E, Schneider H. Chemie Ingenieur Tech., 1983, 55(4): 282.

doi: 10.1002/(ISSN)1522-2640     URL    
[22]
Krause B, Storr M, Ertl T, Buck R, Hildwein H, Deppisch R, Göhl H. Chemie Ingenieur Tech., 2003, 75(11): 1725.

doi: 10.1002/(ISSN)1522-2640     URL    
[23]
Li G H, Wei Q F. Textile Bioengineering and Informatics Symposium Proceedings, 2014, 1/2: 30.
[24]
Li Y Z, Zhang S B, Sun H J. Proceedings of the 2017 6th International Conference on Energy and Environmental Protection (ICEEP 2017). 2017: 550.
[25]
Owen G, Bandi M, Howell J A, Churchouse S J. J. Membr. Sci., 1995, 102: 77.

doi: 10.1016/0376-7388(94)00261-V     URL    
[26]
Gao J, Chung T S. J. Membr. Sci., 2019, 572: 223.

doi: 10.1016/j.memsci.2018.10.082     URL    
[27]
Mechelhoff M, Sharpe A, Hermsdorf N. Euromembrane Conference 2012, 2012, 44: 630.
[28]
Barlokova D, Ilavsky J, Kunstek M, Buchlovicova J. 14th International Symposium-Water Management and Hydraulic Engineering 2015, 2015: 209.
[29]
Mutihac L, Buschmann H J, Diacu E, Mutihac R. Revue Roumaine De Chimie, 2001, 46: 941.
[30]
Khulbe K C, Feng C Y, Matsuura T, Ismail A F. Membr. Water Treat., 2012, 3(3): 181.

doi: 10.12989/mwt.2012.3.3.181     URL    
[31]
Augustin S, Hennige V, Hörpel G, Hying C. Desalination, 2002, 146(1/3): 23.

doi: 10.1016/S0011-9164(02)00465-4     URL    
[32]
Ismail A F, Hafiz W A. J. Power Sources, 2005, 141(1): 177.

doi: 10.1016/j.jpowsour.2004.09.028     URL    
[33]
Yuan Z Z, Zhang H M, Li X F. Chem. Commun., 2018, 54(55): 7570.

doi: 10.1039/C8CC03058H     URL    
[34]
Gubler L. Curr. Opin. Electrochem., 2019, 18: 31.
[35]
Li Y, Song J, Yang J. Chin. Sci. Bull., 2012, 57(32): 4153.

doi: 10.1007/s11434-012-5448-9     URL    
[36]
Costa C M, Lee Y H, Kim J H, Lee S Y, Lanceros-MÉndez S. Energy Storage Mater., 2019, 22: 346.
[37]
Jana K K, Lue S J, Huang A, Soesanto J F, Tung K L. Chembioeng Rev., 2018, 5(6): 346.

doi: 10.1002/cben.v5.6     URL    
[38]
Xie Y D, Kocaefe D, Chen C Y, Kocaefe Y. J. Nanomater., 2016, 2016: 2302595.
[39]
Lamm M E, Li K, Qian J, Wang L, Lavoine N, Newman R, Gardner D J, Li T, Hu L B, Ragauskas A J, Tekinalp H, Kunc V, Ozcan S. Adv. Mater., 2021, 33(12): 2170094.

doi: 10.1002/adma.v33.12     URL    
[40]
Zhao J K, Shao Q, Ge S S, Zhang J X, Lin J, Cao D P, Wu S D, Dong M Y, Guo Z H. Chem. Rec., 2020, 20(7): 710.

doi: 10.1002/tcr.v20.7     URL    
[41]
Zhou Z M, Nonnenmann S S. Materials, 2019, 12(16): 2535.

doi: 10.3390/ma12162535     URL    
[42]
Chen J, Huang X Y, Sun B, Jiang P K. ACS Nano, 2019, 13(1): 337.

doi: 10.1021/acsnano.8b06290     pmid: 30566324
[43]
Ding J X, Zhang J, Li J N, Li D, Xiao C S, Xiao H H, Yang H H, Zhuang X L, Chen X S. Prog. Polym. Sci., 2019, 90: 1.

doi: 10.1016/j.progpolymsci.2019.01.002     URL    
[44]
Lv D, Wang R X, Tang G S, Mou Z P, Lei J D, Han J Q, de Smedt S, Xiong R H, Huang C B. ACS Appl. Mater. Interfaces, 2019, 11(13): 12880.

doi: 10.1021/acsami.9b01508     URL    
[45]
Xue J J, Wu T, Dai Y Q, Xia Y N. Chem. Rev., 2019, 119(8): 5298.

doi: 10.1021/acs.chemrev.8b00593     URL    
[46]
Pervin R, Ghosh P, Basavaraj M G. RSC Adv., 2019, 9(27): 15593.

doi: 10.1039/C9RA01331H     URL    
[47]
Apel P. Radiat. Meas., 2001, 34(1/6): 559.

doi: 10.1016/S1350-4487(01)00228-1     URL    
[48]
Lou X W D, Archer L A, Yang Z C. Adv. Mater., 2008, 20(21): 3987.

doi: 10.1002/adma.v20:21     URL    
[49]
Lee J, Kim J, Hyeon T. Adv. Mater., 2006, 18(16): 2073.

doi: 10.1002/(ISSN)1521-4095     URL    
[50]
Wang X J, Feng J, Bai Y C, Zhang Q, Yin Y D. Chem. Rev., 2016, 116(18): 10983.

doi: 10.1021/acs.chemrev.5b00731     URL    
[51]
He Y F, Zhuang X D, Lei C J, Lei L C, Hou Y, Mai Y Y, Feng X L. Nano Today, 2019, 24: 103.

doi: 10.1016/j.nantod.2018.12.004     URL    
[52]
Li X G, Guan B Y, Gao S Y, Lou X W D. Energy Environ. Sci., 2019, 12(2): 648.

doi: 10.1039/C8EE02779J     URL    
[53]
Zeng H C. Curr. Nanosci., 2007, 3(2): 177.

doi: 10.2174/157341307780619279     URL    
[54]
Despic A, Parkhutik V. Eds: J.O’M. Bockris, BE Conway, RE White, 1989, 20: 523.
[55]
Parthasarathy R V, Martin C R. Nature, 1994, 369(6478): 298.

doi: 10.1038/369298a0     URL    
[56]
Parthasarathy R V, Martin C R. Chem. Mater., 1994, 6(10): 1627.
[57]
Hulteen J. J Mater Chem, 1997, 7: 1075.

doi: 10.1039/a700027h     URL    
[58]
Martin C R, Parthasarathy R, Menon V. Synth. Met., 1993, 55(2/3): 1165.

doi: 10.1016/0379-6779(93)90218-L     URL    
[59]
Xiong S X, Wang Q, Xia H S. Mater. Res. Bull., 2004, 39(10): 1569.

doi: 10.1016/j.materresbull.2004.01.009     URL    
[60]
Han M G, Foulger S H. Chem. Commun., 2005(24): 3092.
[61]
Sumida T, Wada Y J, Kitamura T, Yanagida S. Chem. Commun., 2000(17): 1613.
[62]
Cassagneau T, Caruso F. Adv. Mater., 2002, 14(1): 34.

doi: 10.1002/(ISSN)1521-4095     URL    
[63]
Bartlett P N, Birkin P R, Ghanem M A, Toh C S. J. Mater. Chem., 2001, 11(3): 849.
[64]
Wu C G, Bein T. Science, 1994, 264(5166): 1757.

pmid: 17839911
[65]
Beck J S, Vartuli J C, Roth W J, Leonowicz M E, Kresge C T, Schmitt K D, Chu C T W, Olson D H, Sheppard E W, McCullen S B, Higgins J B, Schlenker J L. J. Am. Chem. Soc., 1992, 114(27): 10834.

doi: 10.1021/ja00053a020     URL    
[66]
Cao L, Chen H Z, Zhou H B, Zhu L, Sun J Z, Zhang X B, Xu J M, Wang M. Adv. Mater., 2003, 15(11): 909.

doi: 10.1002/adma.200304637     URL    
[67]
Noll J D, Nicholson M A, van Patten P G, Chung C W, Myrick M L. J. Electrochem. Soc., 1998, 145(10): 3320.

doi: 10.1149/1.1838806     URL    
[68]
Dersch R, Steinhart M, Boudriot U, Greiner A, Wendorff J H. Polym. Adv. Technol., 2005, 16(2/3): 276.

doi: 10.1002/(ISSN)1099-1581     URL    
[69]
Hou H Q, Jun Z, Reuning A, Schaper A, Wendorff J H, Greiner A. Macromolecules, 2002, 35(7): 2429.

doi: 10.1021/ma011607i     URL    
[70]
Xia L, Wei Z X, Wan M X. J. Colloid Interface Sci., 2010, 341(1): 1.

doi: 10.1016/j.jcis.2009.09.029     URL    
[71]
Guo Z B, Xiu R J, Lu S F, Xu X, Yang S C, Xiang Y. J. Mater. Chem. A, 2015, 3(16): 8847.

doi: 10.1039/C5TA00415B     URL    
[72]
Shin S, Sung J, Jeon H, So H. Int. J. Adv. Manuf. Technol., 2019, 104(5/8): 3027.

doi: 10.1007/s00170-019-04191-2     URL    
[73]
Xue Z X, Xing X W, Zhu S X, Zhang W, Luan L Y, Niu Y Z, Bai L J, Chen H, Tao Q. Desalination Water Treatment, 2019, 164: 151.

doi: 10.5004/dwt     URL    
[74]
Siddiqui S, Coupy A, Tallon J M, Dumon M. J. Porous Mater., 2020, 27(4): 1013.

doi: 10.1007/s10934-020-00878-0     URL    
[75]
Magerl A, Goedel W A. Langmuir, 2012, 28(13): 5622.

doi: 10.1021/la2044703     URL    
[76]
Nagaraj M. Crystals, 2020, 10(8): 648.

doi: 10.3390/cryst10080648     URL    
[77]
Hubert D H W, Jung M, German A L. Adv. Mater., 2000, 12(17): 1291.

doi: 10.1002/(ISSN)1521-4095     URL    
[78]
Jang J, Bae J. Chem. Commun., 2005(9): 1200.
[79]
Gao F, Ho C C, Co C C. J. Am. Chem. Soc., 2004, 126(40): 12746.

doi: 10.1021/ja0467115     URL    
[80]
Tanaka S, Nakatani N, Doi A, Miyake Y. Carbon, 2011, 49(10): 3184.

doi: 10.1016/j.carbon.2011.03.042     URL    
[81]
Zhang L C, Zhang Y F, Chen P, Du W, Feng X J, Liu B F. Langmuir, 2019, 35(34): 11123.

doi: 10.1021/acs.langmuir.9b01861     URL    
[82]
Kovalenko A, Zimny K, Mascaro B, Brunet T, Mondain-Monval O. Soft Matter, 2016, 12(23): 5154.

doi: 10.1039/c6sm00461j     pmid: 27195990
[83]
Zhang Y, Li J P, An G M, He X L. Sens. Actuat. B Chem., 2010, 144(1): 43.

doi: 10.1016/j.snb.2009.10.012     URL    
[84]
Barhoum A, Bechelany M, Makhlouf A. Springer International Publishing: Cham, 2018: 1.
[85]
Ma W, Jin M H, Yu C L, Liao M Y, Zhao Y. Chem. J. Chin. Univ., 2009, 30: 2096.
[86]
Tajitsu Y. IEEE Trans. Dielect. Electr. Insul., 2015, 22(3): 1355.

doi: 10.1109/TDEI.2015.7116322     URL    
[87]
Gunn J, Zhang M Q. Trends Biotechnol., 2010, 28(4): 189.

doi: 10.1016/j.tibtech.2009.12.006     URL    
[88]
Matsuyama H, Hayashi K, Maki T, Teramoto M, Kubota N. J. Appl. Polym. Sci., 2004, 93(1): 471.

doi: 10.1002/(ISSN)1097-4628     URL    
[89]
Matsuyama H, Okafuji H, Maki T, Teramoto M, Kubota N. J. Membr. Sci., 2003, 223(1/2): 119.

doi: 10.1016/S0376-7388(03)00314-4     URL    
[90]
Zhang C F, Bai Y X, Sun Y P, Gu J, Xu Y Y. J. Membr. Sci., 2010, 365(1/2): 216.

doi: 10.1016/j.memsci.2010.09.007     URL    
[91]
Kim M, Kim G, Kim J, Lee D, Lee S, Kwon J, Han H. Microporous Mesoporous Mater., 2017, 242: 166.

doi: 10.1016/j.micromeso.2017.01.013     URL    
[92]
Zhao X T, Su Y L, Chen W J, Peng J M, Jiang Z Y. J. Membr. Sci., 2011, 382(1/2): 222.

doi: 10.1016/j.memsci.2011.08.014     URL    
[93]
Khare V P, Greenberg A R, Krantz W B. J. Membr. Sci., 2005, 258(1/2): 140.

doi: 10.1016/j.memsci.2005.03.015     URL    
[94]
Ke Q R, Liao Y Y, Lin M F, Lin S S, Du H, Yao S, Xiong X P. J. Polym. Res., 2015, 22(11): 1.

doi: 10.1007/s10965-014-0642-x     URL    
[95]
Hao Y, Sano R, Shimomura A, Matsuyama H, Maruyama T. J. Membr. Sci., 2014, 460: 229.

doi: 10.1016/j.memsci.2014.02.039     URL    
[96]
Pasman T, Baptista D, van Riet S, Truckenmüller R K, Hiemstra P S, Rottier R J, Stamatialis D, Poot A A. Membranes, 2020, 10(11): 330.

doi: 10.3390/membranes10110330     URL    
[97]
Mandal J, Fu Y K, Overvig A C, Jia M X, Sun K R, Shi N N, Zhou H, Xiao X H, Yu N F, Yang Y. Science, 2018, 362(6412): 315.

doi: 10.1126/science.aat9513     URL    
[98]
Li W, Ryan A J, Meier I K. Macromolecules, 2002, 35(13): 5034.

doi: 10.1021/ma020035e     URL    
[99]
Zhou X J, Xue R, Zhong Y G, Zhang Y, Jiang F J. J. Membr. Sci., 2020, 595: 117614.

doi: 10.1016/j.memsci.2019.117614     URL    
[100]
Silverstein M S, Cameron N R, Hillmyer M A. Porous Polymers. John Wiley & Sons, Inc., 2011.
[101]
Deville S, Saiz E, Nalla R K, Tomsia A P. Science, 2006, 311(5760): 515.

doi: 10.1126/science.1120937     URL    
[102]
Cuscito O, Clochard M C, Esnouf S, Betz N, Lairez D. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms, 2007, 265(1): 309.

doi: 10.1016/j.nimb.2007.08.089     URL    
[103]
Mao Z P, Qi Y L, Yang Z B, Jiang G D, Zhang J. Appl. Surf. Sci., 2020, 518: 146209.

doi: 10.1016/j.apsusc.2020.146209     URL    
[104]
Duan S, Yang K, Wang Z, Chen M, Zhang L, Zhang H, Li C. ACS Appl. Mater. Interfaces, 2016, 8: 2187.

doi: 10.1021/acsami.5b10791     URL    
[105]
Sadeghi F, Ajji A, Carreau P J. J. Membr. Sci., 2007, 292(1/2): 62.

doi: 10.1016/j.memsci.2007.01.023     URL    
[106]
Li J, Zhang Y. 4th Kuala Lumpur International Conference on Biomedical Engineering 2008, 2008, 337.
[107]
Zhang P, Yang L C, Li L, Qu Q T, Wu Y P, Shimizu M. J. Membr. Sci., 2010, 362(1/2): 113.

doi: 10.1016/j.memsci.2010.06.024     URL    
[108]
Guo G Z, Sun Y Y, Yang B H, Liu Y Q. Mechanics and Manufacturing, 2012, 109: 110.
[109]
Yin J, Yao X P, Liou J Y, Sun W, Sun Y S, Wang Y. ACS Nano, 2013, 7(11): 9961.

doi: 10.1021/nn403847z     URL    
[110]
Wang Y. Accounts of Chemical Research, 2016, 49: 1401.

doi: 10.1021/acs.accounts.6b00233     URL    
[111]
Gin D L, Noble R D. Science, 2011, 332(6030): 674.

doi: 10.1126/science.1203771     URL    
[112]
Majewski P W, Gopinadhan M, Jang W S, Lutkenhaus J L, Osuji C O. J. Am. Chem. Soc., 2010, 132(49): 17516.

doi: 10.1021/ja107309p     pmid: 21090713
[113]
Henmi M, Nakatsuji K, Ichikawa T, Tomioka H, Sakamoto T, Yoshio M, Kato T. Adv. Mater., 2012, 24(17): 2238.

doi: 10.1002/adma.201200108     URL    
[114]
Shiohara A, Prieto-Simon B, Voelcker N H. J. Mater. Chem. B, 2021, 9(9): 2129.

doi: 10.1039/d0tb01727b     pmid: 33283821
[115]
Liu S P, Tian W G, Liu Z H, Liu X J. Rare Met. Mater. Eng., 2009, 38(1): 15.

doi: 10.1016/S1875-5372(10)60014-8     URL    
[116]
Lukyanovich V M, Kolyutsk V, Zhurnal F. Khimii, 1974, 48: 2131.
[117]
Danilatos G D. Microsc. Res. Tech., 1993, 25(5/6): 354.

doi: 10.1002/(ISSN)1097-0029     URL    
[118]
Banhart J. Prog. Mater. Sci., 2001, 46(6): 559.

doi: 10.1016/S0079-6425(00)00002-5     URL    
[119]
Tian Y, Wu J Z. AIChE J., 2018, 64(1): 286.

doi: 10.1002/aic.v64.1     URL    
[120]
Chen L, Chen Q, Li Z, Guo Z Y. Chin. Sci. Bull., 2010, 55(12): 1174.

doi: 10.1360/csb2010-55-12-1174     URL    
( 陈林, 陈群, 李震, 过增元. 科学通报, 2010, 55(12): 1174.)
[121]
Yao Z K, Guo H, Yang Z, Lin C E, Zhu B K, Dong Y C, Tang C Y. Desalination, 2018, 436: 1.

doi: 10.1016/j.desal.2018.01.039     URL    
[122]
Cath T Y, Childress A E, Elimelech M. J. Membr. Sci., 2006, 281(1/2): 70.

doi: 10.1016/j.memsci.2006.05.048     URL    
[123]
Cuperus F P, Nijhuis H H. Trends Food Sci. Technol., 1993, 4(9): 277.

doi: 10.1016/0924-2244(93)90070-Q     URL    
[124]
Skelton R. Filtr. Separat., 2000, 37: 28.
[125]
Cuperus F P. Sep. Purif. Technol., 1998, 14(1/3): 233.

doi: 10.1016/S1383-5866(98)00078-1     URL    
[126]
Kotsanopoulos K V, Arvanitoyannis I S. Crit. Rev. Food Sci. Nutr., 2015, 55(9): 1147.

doi: 10.1080/10408398.2012.685992     pmid: 24915344
[127]
Dhungana P, Bhandari B. Int. J. Food Sci. Technol., 2021, 56: 4268.

doi: 10.1111/ijfs.v56.9     URL    
[128]
Moresi M, Lo Presti S. Italian Journal of Food Science, 2003, 15: 3.
[129]
Chung T S, Foley P, Kafchinski E R. J. Mater. Sci. Mater. Electron., 1993, 4(4): 259.
[130]
Lu W J, Yuan Z Z, Zhao Y Y, Zhang H Z, Zhang H M, Li X F. Chem. Soc. Rev., 2017, 46(8): 2199.

doi: 10.1039/C6CS00823B     URL    
[131]
Li D, Zhang H M, Li X F. J. Membr. Sci., 2018, 565: 42.

doi: 10.1016/j.memsci.2018.08.011     URL    
[132]
Mehwish N, Kausar A, Siddiq M. Polym. Plast. Technol. Eng., 2014, 53(12): 1290.

doi: 10.1080/03602559.2014.909465     URL    
[133]
Kim H J, Kim D G, Lee K, Baek Y, Yoo Y, Kim Y S, Kim B G, Lee J C. Sci. Rep., 2016, 6: 36078.

doi: 10.1038/srep36078     URL    
[134]
Ahmad N A, Goh P S, Yogarathinam L T, Zulhairun A K, Ismail A F. Desalination, 2020, 493: 114643.

doi: 10.1016/j.desal.2020.114643     URL    
[135]
Rezakazemi M, Dashti A, Riasat Harami H, Hajilari N, Inamuddin. Environ. Chem. Lett., 2018, 16(3): 715.

doi: 10.1007/s10311-018-0717-8     URL    
[136]
Drioli E, Macedonio F. Ind. Eng. Chem. Res., 2012, 51(30): 10051.

doi: 10.1021/ie2028188     URL    
[137]
Zheng X, Yu M, Liang H, Qi L, Zheng H, Exler H, Schier W, Frechen F B. Desalination Water Treat., 2012, 491-3: 281.
[138]
Feng H, Zhang H, Chen Y, Xu L. Natural Gas Industry, 2006, 26: 141.
[139]
Yuan L, Wang Z, Wang S C. Membr. Sci. Technol., 2002, 22(4): 55.
( 袁力, 王志, 王世昌. 膜科学与技术, 2002, 22(4): 55.)
[140]
Pulyalina A, Polotskaya G, Rostovtseva V, Pientka Z, Toikka A. Polymers, 2018, 10(8): 828.

doi: 10.3390/polym10080828     URL    
[141]
Yuan H, Yu B, Cong H, Peng Q, Yang R, Yang S, Yang Z, Luo Y, Xu T, Zhang H, Li Z. Reviews on Advanced Materials Science, 2016, 44: 207.
[142]
Dalane K, Dai Z D, Mogseth G, Hillestad M, Deng L Y. J. Nat. Gas Sci. Eng., 2017, 39: 101.

doi: 10.1016/j.jngse.2017.01.023     URL    
[143]
Tul Muntha S, Kausar A, Siddiq M. Polym. Plast. Technol. Eng., 2016, 55(12): 1282.

doi: 10.1080/03602559.2016.1163592     URL    
[144]
Eudailey W A. Am. J. Heal. Syst. Pharm., 1983, 40(11): 1921.
[145]
van Oudheusden A P M, Roesink H W. Ann. Clin. Biochem. Int. J. Lab. Med., 1991, 28(1): 55.

doi: 10.1177/000456329102800109     URL    
[146]
Menachem E, William A P. Science, 2011, 333: 712.

doi: 10.1126/science.1200488     URL    
[147]
Mark A. Nature, 2008, 452: 20.
[148]
van Reis R, Zydney A. J. Membr. Sci., 2007, 297(1/2): 16.

doi: 10.1016/j.memsci.2007.02.045     URL    
[149]
Lutz H. Ultrafiltration for Bioprocessing. Amsterdam: Elsevier, 2015: 7/30.
[150]
Stamatialis D F, Papenburg B J, GironÉs M, Saiful S, Bettahalli S N M, Schmitmeier S, Wessling M. J. Membr. Sci., 2008, 3081-2: 1.
[151]
Peinemann K V, Nunes S P, Giorno L. Membranes for Food Applications. John Wiley & Sons, 2011.
[152]
Sata T. Ion Exchange Membranes: Preparation, Characterization, Modification and Application. Royal Society of Chemistry, 2007.
[153]
Arora P, Zhang Z J. Chem. Rev., 2004, 104(10): 4419.

doi: 10.1021/cr020738u     URL    
[154]
Post J W, Hamelers H V M, Buisman C J N. Environ. Sci. Technol., 2008, 42(15): 5785.

pmid: 18754509
[155]
Logan B E, Elimelech M. Nature, 2012, 488(7411): 313.

doi: 10.1038/nature11477     URL    
[156]
Merkel T C, Lin H Q, Wei X T, Baker R. J. Membr. Sci., 2010, 359(1/2): 126.

doi: 10.1016/j.memsci.2009.10.041     URL    
[157]
Blaney L M, Cinar S, SenGupta A K. Water Res., 2007, 41(7): 1603.

pmid: 17306856
[158]
White L S. J. Membr. Sci., 2006, 286(1/2): 26.

doi: 10.1016/j.memsci.2006.09.006     URL    
[159]
Marchetti P, Jimenez Solomon M F, Szekely G, Livingston A G. Chem. Rev., 2014, 114(21): 10735.

doi: 10.1021/cr500006j     pmid: 25333504
[160]
Curcio E, Drioli E. Sep. Purif. Rev., 2005, 34(1): 35.

doi: 10.1081/SPM-200054951     URL    
[161]
Joscelyne S M, Trägårdh G. J. Membr. Sci., 2000, 169(1): 107.

doi: 10.1016/S0376-7388(99)00334-8     URL    
[162]
Bernardo P, Drioli E, Golemme G. Ind. Eng. Chem. Res., 2009, 48(10): 4638.

doi: 10.1021/ie8019032     URL    
[163]
Lin R B, Xiang S C, Xing H B, Zhou W, Chen B L. Coord. Chem. Rev., 2019, 378: 87.

doi: 10.1016/j.ccr.2017.09.027     URL    
[164]
Lin R B, Xiang S C, Zhou W, Chen B L. Chem, 2020, 6(2): 337.

doi: 10.1016/j.chempr.2019.10.012     URL    
[165]
Xue D X, Wang Q, Bai J F. Coord. Chem. Rev., 2019, 378: 2.

doi: 10.1016/j.ccr.2017.10.026     URL    
[166]
Ismail A F, Matsuura T, Switz. Springer, 2015, 10: 978.
[167]
Li P, Chen H Z, Chung T S. J. Membr. Sci., 2013, 434: 18.

doi: 10.1016/j.memsci.2013.01.042     URL    
[168]
Bandehali S, Moghadassi A, Parvizian F, Hosseini S M, Matsuura T, Joudaki E. J. Energy Chem., 2020, 46: 30.
[169]
Petrie B, Barden R, Kasprzyk-Hordern B. Water Res., 2015, 72: 3.

doi: 10.1016/j.watres.2014.08.053     pmid: 25267363
[170]
Sharma S, Bhattacharya A. Appl. Water Sci., 2017, 7(3): 1043.

doi: 10.1007/s13201-016-0455-7     URL    
[171]
Ma X J, Chai Y T, Li P, Wang B. Acc. Chem. Res., 2019, 52(5): 1461.

doi: 10.1021/acs.accounts.9b00113     URL    
[172]
Xie K, Fu Q, Qiao G G, Webley P A. J. Membr. Sci., 2019, 572: 38.

doi: 10.1016/j.memsci.2018.10.049    
[173]
Chen J P, Mou H, Wang L K, Matsuura T. Membrane filtration. Advanced Physicochemical Treatment Processes. Springer, 2006. 203.
[174]
Fan X C, Dong Y N, Su Y L, Zhao X T, Li Y F, Liu J Z, Jiang Z Y. J. Membr. Sci., 2014, 452: 90.

doi: 10.1016/j.memsci.2013.10.026     URL    
[175]
Kong J F, Zhu Y Z, Jin J. Chem. J. Chin. Univ., 2020, 41: 690.
[176]
Villalobos L F, Huang T F, Peinemann K V. Adv. Mater., 2017, 29(26): 1606641.

doi: 10.1002/adma.v29.26     URL    
[177]
Wang Z, Ma H, Zhai T L, Cheng G, Xu Q, Liu J M, Yang J K, Zhang Q M, Zhang Q P, Zheng Y S, Tan B E, Zhang C. Adv. Sci., 2018, 5(7): 1800141.

doi: 10.1002/advs.v5.7     URL    
[178]
Zhao Q, Liu Y. Chem. Commun., 2018, 54(53): 7362.

doi: 10.1039/C8CC04080J     URL    
[179]
Li B Y, Zhang Y M, Ma D X, Shi Z, Ma S Q. Nat. Commun., 2014, 5: 5537.

doi: 10.1038/ncomms6537     URL    
[180]
Sun Q, Aguila B, Perman J, Ivanov A S, Bryantsev V S, Earl L D, Abney C W, Wojtas L, Ma S Q. Nat. Commun., 2018, 9: 1644.

doi: 10.1038/s41467-018-04032-y     pmid: 29691403
[181]
Li B Y, Sun Q, Zhang Y M, Abney C W, Aguila B, Lin W B, Ma S Q. ACS Appl. Mater. Interfaces, 2017, 9(14): 12511.

doi: 10.1021/acsami.7b01711     URL    
[182]
Kamcev J, Taylor M K, Shin D M, Jarenwattananon N N, Colwell K A, Long J R. Adv. Mater., 2019, 31(18): 1808027.

doi: 10.1002/adma.v31.18     URL    
[183]
Tian Y Y, Song J, Zhu Y L, Zhao H Y, Muhammad F, Ma T T, Chen M, Zhu G S. Chem. Sci., 2019, 10(2): 606.

doi: 10.1039/C8SC03727B     URL    
[184]
Zhu Y Z, Wang D, Jiang L, Jin J. NPG Asia Mater., 2014, 6(5): e101.

doi: 10.1038/am.2014.23     URL    
[185]
Tao M M, Xue L X, Liu F, Jiang L. Adv. Mater., 2014, 26(18): 2943.

doi: 10.1002/adma.v26.18     URL    
[186]
Pattle R E. Nature, 1954, 174(4431): 660.

doi: 10.1038/174660a0     URL    
[187]
Zhou Y H, Jiang L. Joule, 2020, 4(11): 2244.

doi: 10.1016/j.joule.2020.09.009     URL    
[188]
Kong C L, Kanezashi M, Yamomoto T, Shintani T, Tsuru T. J. Membr. Sci., 2010, 362(1/2): 76.

doi: 10.1016/j.memsci.2010.06.022     URL    
[189]
Arora P, Zhang Z J. Chem. Rev., 2004, 104(10): 4419.

doi: 10.1021/cr020738u     URL    
[190]
Yamaguchi T, Miyata F, Nakao S I. J. Membr. Sci., 2003, 214(2): 283.

doi: 10.1016/S0376-7388(02)00579-3     URL    
[191]
Huai Y J, Deng J M, Li R G, Deng Z H, Suo J S. J. Solid State Electrochem., 2013, 17(1): 209.

doi: 10.1007/s10008-012-1877-2     URL    
[192]
Lai Y X, Li Y, Cao H J, Long J, Wang X L, Li L, Li C R, Jia Q Y, Teng B, Tang T T, Peng J, Eglin D, Alini M, Grijpma D W, Richards G, Qin L. Biomaterials, 2019, 197: 207.

doi: 10.1016/j.biomaterials.2019.01.013     URL    
[193]
Lin Y J, Bariya M, Nyein H Y Y, Kivimäki L, Uusitalo S, Jansson E, Ji W B, Yuan Z, Happonen T, Liedert C, Hiltunen J, Fan Z Y, Javey A. Adv. Funct. Mater., 2019, 29(33): 1902521.

doi: 10.1002/adfm.v29.33     URL    
[194]
Kim T H, Jung Y, Kim S H. Tissue Eng. A, 2018, 24(9/10): 830.

doi: 10.1089/ten.tea.2017.0318     URL    
[195]
Chen Y, Zhang Y, Wang F J, Meng W W, Yang X L, Li P, Jiang J X, Tan H M, Zheng Y F. Mater. Sci. Eng. C, 2016, 63: 18.

doi: 10.1016/j.msec.2016.02.048     URL    
[1] 赵秉国, 刘亚迪, 胡浩然, 张扬军, 曾泽智. 制备固体氧化物燃料电池中电解质薄膜的电泳沉积法[J]. 化学进展, 2023, 35(5): 794-806.
[2] 张婉萍, 刘宁宁, 张倩洁, 蒋汶, 王梓鑫, 张冬梅. 刺激响应性聚合物微针系统经皮药物递释[J]. 化学进展, 2023, 35(5): 735-756.
[3] 曹如月, 肖晶晶, 王伊轩, 李翔宇, 冯岸超, 张立群. 杂Diels-Alder 环加成反应级联RAFT聚合[J]. 化学进展, 2023, 35(5): 721-734.
[4] 董宝坤, 张婷, 何翻. 柔性热电材料的研究进展及应用[J]. 化学进展, 2023, 35(3): 433-444.
[5] 刘峻, 叶代勇. 抗病毒涂层[J]. 化学进展, 2023, 35(3): 496-508.
[6] 邬学贤, 张岩, 叶淳懿, 张志彬, 骆静利, 符显珠. 面向电子应用的聚合物化学镀前表面处理技术[J]. 化学进展, 2023, 35(2): 233-246.
[7] 王琦桐, 丁嘉乐, 赵丹莹, 张云鹤, 姜振华. 储能薄膜电容器介电高分子材料[J]. 化学进展, 2023, 35(1): 168-176.
[8] 黄帅, 陶钰, 黄银亮. 基于液晶聚合物的光致形变复合材料[J]. 化学进展, 2022, 34(9): 2012-2023.
[9] 蒋峰景, 宋涵晨. 石墨基液流电池复合双极板[J]. 化学进展, 2022, 34(6): 1290-1297.
[10] 周天瑜, 王彦博, 赵翌琳, 李洪吉, 刘春波, 车广波. 水相识别分子印迹聚合物在样品预处理中的应用[J]. 化学进展, 2022, 34(5): 1124-1135.
[11] 李程浩, 刘亚敏, 卢彬, 萨拉乌拉, 任先艳, 孙亚平. 碳点的高性能化和功能化改性:方法、特性与展望[J]. 化学进展, 2022, 34(3): 499-518.
[12] 刘玉玲, 胡腾达, 李伊莲, 林洋, Borsali Redouane, 廖英杰. 嵌段共聚物薄膜快速自组装方法[J]. 化学进展, 2022, 34(3): 609-615.
[13] 李庚, 李洁, 姜泓宇, 梁效中, 郭鹍鹏. 力刺激响应发光聚合物[J]. 化学进展, 2022, 34(10): 2222-2238.
[14] 陈龙, 黄少博, 邱景义, 张浩, 曹高萍. 聚合物固态锂电池电解质/负极界面[J]. 化学进展, 2021, 33(8): 1378-1389.
[15] 陈永杭, 李欣芳, 余伟江, 王幽香. 刺激响应聚合物微针在经皮给药中的应用[J]. 化学进展, 2021, 33(7): 1152-1158.