English
新闻公告
More
化学进展 2021, Vol. 33 Issue (7): 1059-1073 DOI: 10.7536/PC200715   后一篇

• 综述 •

碳量子点的荧光发射机制

吴星辰1, 梁文慧1,2, 蔡称心1,*()   

  1. 1 南京师范大学化学与材料科学学院 南京 210023
    2 江苏第二师范学院生命科学与化学化工学院 南京 210013
  • 收稿日期:2020-07-09 修回日期:2020-10-30 出版日期:2021-07-20 发布日期:2020-12-28
  • 通讯作者: 蔡称心
  • 基金资助:
    国家自然科学基金项目(21675088)

Photoluminescence Mechanisms of Carbon Quantum Dots

Xingchen Wu1, Wenhui Liang1,2, Chenxin Cai1,*()   

  1. 1 College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
    2 College of Life Science and Chemistry, Jiangsu Second Normal University, Nanjing 210023, China
  • Received:2020-07-09 Revised:2020-10-30 Online:2021-07-20 Published:2020-12-28
  • Contact: Chenxin Cai
  • About author:
    * Corresponding author e-mail:
  • Supported by:
    National Natural Science Foundation of China(21675088)

碳量子点(CQDs)一般是指粒径小于10 nm的零维碳材料,因其具有优良的光学特性而在生物成像、光学器件、生物复合材料和生物传感等领域得到广泛应用,并有望成为未来应用最广泛的一种碳材料。CQDs的光学特性受粒径、表面官能团及合成的条件(如温度、溶剂的种类和pH等)的影响,为了精准调控其光学性能以及进一步扩大其应用范围,需对其光致发光(Photoluminescence,PL)机制进行详细研究。然而,CQDs的PL机制尚不完全明确,目前,已提出的PL机制有量子限域效应、表面态发射、碳核和荧光分子、多环芳烃分子发射、自陷激子模型、表面偶极子发射中心、聚集发射中心、多发射中心、缓慢的溶剂弛豫和溶剂化效应等。但这些发光机制都只能在一定程度上解释CQDs的部分PL现象,还没有一种机制能解释CQDs的所有PL现象,严重制约了对CQDs光学特性的调控。本文对CQDs不同的PL机制进行分类和总结,希望为进一步阐明其PL机制及实现CQDs 光学特性的可控调节提供参考。

Carbon quantum dots (CQDs) generally refer to zero-dimensional carbon materials with a particle size of less than 10 nm. Due to their excellent optical properties, they have been used extensively in the fields of bioimaging, optical devices, biocomposite materials, biosensing, etc., and can be expected to become one of the most widely used carbon material in the future. The optical properties of CQDs are affected by particle size, surface functional groups, synthesis temperature, type of solvent, and pH. In order to precisely control their optical properties and further expand their scope of application, their photoluminescence (PL) mechanisms need to be elucidated in details, however, the PL mechanism of CQDs is currently not complete clear. At present, the proposed PL mechanism includes quantum confinement effect, surface states emission, molecular fluorophores and carbogenic core, polycyclic aromatic hydrocarbon molecular emission, self-trapped exciton emission, surface dipole emission center, aggregate emission center, multiple emission center, slowed solvent relaxation and solvatochromic shift etc. But each mechanism can only explain part of the PL phenomenon of CQDs to a certain extent. No mechanism can explain all the PL phenomena of CQDs, which seriously restricts the regulation of the optical properties of CQDs. This review classifies and summarizes the different PL mechanisms of CQDs, its purpose is to provide a reference for further elucidating its PL mechanism and achieving controllable adjustment of the optical characteristics of CQDs.

Contents

1 Introduction

2 Optical characteristics of CQDs

2.1 UV-Vis absorption characteristics

2.2 Fluorescence characteristics (photoluminescence characteristics)

2.3 Electroluminescence characteristics

2.4 Up-converted luminescence

3 PL mechanism of CQDs

3.1 Quantum confinement effect

3.2 Surface states emission

3.3 Molecular fluorophores and carbogenic core

3.4 Polycyclic aromatic hydrocarbon molecular emission

3.5 Self-trapped exciton emission

3.6 Surface dipole emission center

3.7 Aggregate emission center

3.8 Multiple emission center

3.9 Slowed solvent relaxation and solvatochromic shift

4 Conclusion and outlook

()
图1 (a)不同条件制备的CQDs的吸收光谱[55]; (b)溶剂诱导的CQDs吸收峰红移[49];(c)聚集诱导的CQDs长波区域的吸收[55]; (d) 表面功能团诱导的CQDs长波区域的吸收[23]
Fig. 1 (a) Absorption spectra of CQDs prepared under different conditions[55]; (b) solvent-induced absorption peak redshift for CQDs[49]; (c) aggregation-induced absorption in the long-wavelength region[55]; (d) modification group-induced absorption of CQDs in the long-wavelength region[23]
图2 (a) 光致发光的过程机制:电子发生跃迁并返回较低能级,以光子形式释放能量; (b) 在300~470 nm激发光激发下CQD的PL发射光谱[23]
Fig. 2 (a) Formal process of photoluminescence: electrons transition and back to lower energy levels, releasing energy in the form of photons; (b) PL emission spectra of the CQDs under excitation wavelengths from 300 to 470 nm[23]
图3 (a) Pt电极和负载CQDs的Pt电极的ECL响应[59];(b)电致发光(EL)光谱和多色发射光的照片[63]
Fig. 3 (a)ECL responses of Pt electrodes (a’) with and (b’) without CQDs at its surface in 0.1 mol/L phosphate buffer solution[59]. (b) Electroluminescence(EL) spectra and photographs of multicolor emissions[63]
图4 (a) CQDs在不同激发光波长下的上转化荧光光谱[66]
Fig. 4 Excitation-dependent up-conversion fluorescence spectra of CQDs[66]
图5 上转化和下转化荧光的机制:单光子吸收,释放较低能量,产生下转换荧光;多光子的吸收,释放更高能量,产生上转换荧光
Fig. 5 The mechanism of up-and down-conversion fluorescence: single-photon absorption, release less energy, and produce down-conversion fluorescence. Multiphoton absorption releases more energy and produces up-converted fluorescence
图6 (a) 不同粒径CQDs的PL光谱[68];(b) CQDs的HOMO 和LUMO 能级与粒径的关系[68]; (c) TDDFT计算的发射光波长与石墨烯量子点粒径的依赖关系[73];(d) 基于DFT计算的π-π*跃迁的能隙与稠合芳环数的关系[74]
Fig. 6 (a) Absorption spectra of CQDs with different particle sizes[68]. (b) Normalized PL spectra of CQDs with different particle sizes[68]. (c)Calculated emission wavelength with diameter of graphene quantum dots[73]. (d) Energy gap of π-π * transitions calculated based on DFT as a function of the number of fused aromatic rings[74]
图7 (a) 365 nm 紫外光激发下CQDs呈现不同颜色的荧光照片[75];(b) 选取的四种CQDs(平均粒径约为2.6 nm)的带隙示意图[75];(c) 受表面态影响的PL发射示意图[76]
Fig. 7 (a) Fluorescence photographs of CQDs with different color under 365 nm UV excitation[75]. (b) Schematic diagram of the band gap of four selected CQDs (average particle size is about 2.6 nm)[75]. (c) Schematic diagram of PL emission affected by the surface state[76]
图8 (a) 热处理CA和EA混合物产生的三种光敏物质的发射特性示意图[81];(b) 在不同温度下制备的CQDs的粒径大小示意图[82]
Fig. 8 (a) Schematic representation of the emission characteristics of three photoactive species produced from the thermal treatment of mixture of CA and EA[81]. (b) Schematic illustration of the CQDs obtained at different hydrothermal temperatures[82]
图9 (a) CQDs、蒽、苝、芘的吸收光谱;(b) CQDs、蒽、苝、芘的PL光谱,激发光波长为337 nm ;(c) CQD和PAH-薄膜的吸收光谱;(d) PAH诱导发光的过程示意图[87]
Fig. 9 (a) Absorption spectra of CQDs, anthracene, perylene, pyrene. (b) PL spectra of CQDs, anthracene, perylene, pyrene under 337 nm excitation wavelength. (c) Absorption spectra of CQDs and PAH-film. (d) Schematic diagram of PAH-induced luminescence[87]
图10 荧光分子基团含量和芳香域结构与反应时间的关系[88]
Fig.10 Changes in the content of fluorophores and aromatic domain structures with different reaction times[88]
图11 (a) CQDs的各向异性PL发射光谱 ;(b) CQDs的PL发射光强度与调制电场的关系 ;(c) CQDs的PL发射光强度与调制电场功率的关系;(d) CQDs中自陷激子的电子结构[91]
Fig.11 (a) Emission anisotropy and degree of linear polarization of CQDs. (b) Electric-field modulation of CQDs emission. (c) Power-dependent PL intensity. (d) Electronic structure of self-trapped excitons, which contribute to carbon dots emission[91]
图12 (a) 具有不同晶体结构的单个CQDs的HRTEM图像;(b) 方位偏振的激光束(上下扫描方向)扫描的CQDs图像 ;(c) 467 nm激发的单个CQDs的PL光谱 ;(d) 在467和488 nm激发光下单个CQD的PL光谱[95]
Fig.12 (a) HRTEM images of individual CQDs possessing various crystal structures. (b) Consecutive images of the same sample area recorded by using an azimuthally polarized laser beam (scanning direction up-down). Each double-lobe pattern corresponds to the same CQDs. (c) Single CQDs spectra under 467 nm. (d) PL spectra of single CQDs under 467 and 488 nm laser[95]
图13 (a) 300 K下CQDs的吸收、激发和荧光光谱;(b) CQDs的聚集结构模型及其畸变过程;(c) 聚集体结构诱导的带隙减小示意图[97]
Fig.13 (a) Absorption, excitation and fluorescence spectra of CQDs at 300 K. (b) CQDs aggregation structure model and its distortion process. (c) Aggregation structure-induced band gap reduction[97]
图14 (a) CQDs可能的多重荧光发射机制[103];(b) 一锅合成和纯化CQDs的示意图,粒径和缺陷含量变化导致PL发射波长的移动[104]
Fig.14 (a) Proposed fluorescent mechanism of the ternary fluorescent centers of CQDs[103]. (b) Schematic diagram of one-pot synthesis and purification of CQDs. Changes in particle size and defect content lead to shift in PL emission wavelength[104]
图15 (a) CQDs在CCl4、甲苯、CHCl3、丙酮、DMF和H2O中的荧光照片[109];(b)不同溶剂中CQDs可能的发射过程[109]; (c)溶剂与分子结合产生的新能级的示意图[109]; (d) CQDs, DA-CQDs和PFDA-CQDs在氯仿和甲醇中在自然光、365 nm紫外光和302 nm紫外光激发下的荧光照片[111]
Fig.15 (a) Photograph of the CQDs excited by different wavelength lights in solvents of CCl4, toluene, CHCl3, acetone, DMF, and H2O[109]. (b) Illustration of the possible emission processes of the CQDs in different solvents[109]. (c) Illustration of the combination of solvent and molecule to generate new energy level[109]. (d) Photographs of CQDs, DA-CQDs, and PFDA-CQDs in chloroform and methanol under white light, 365 nm UV light, and 302 nm UV light[111]
[1]
Liu R L, Wu D Q, Feng X L, Müllen K. J. Am. Chem. Soc., 2011, 133(39):15221.

doi: 10.1021/ja204953k     URL    
[2]
Fernando K A S, Sahu S, Liu Y M, Lewis W K, Guliants E A, Jafariyan A, Wang P, Bunker C E, Sun Y P. ACS Appl. Mater. Interfaces, 2015, 7(16):8363.

doi: 10.1021/acsami.5b00448     URL    
[3]
Wang L, Chen X, Lu Y L, Liu C X, Yang W S. Carbon, 2015, 94:472.

doi: 10.1016/j.carbon.2015.06.084     URL    
[4]
Xu X Y, Ray R, Gu Y L, Ploehn H J, Gearheart L, Raker K, Scrivens W A. J. Am. Chem. Soc., 2004, 126(40):12736.

doi: 10.1021/ja040082h     URL    
[5]
Hu S L, Niu K Y, Sun J, Yang J, Zhao N Q, Du X W. J. Mater. Chem., 2009, 19(4):484.

doi: 10.1039/B812943F     URL    
[6]
Ming H, Ma Z, Liu Y, Pan K M, Yu H, Wang F, Kang Z H. Dalton Trans., 2012, 41(31):9526.

doi: 10.1039/c2dt30985h     pmid: 22751568
[7]
Cai Z W, Li F M, Wu P, Ji L J, Zhang H, Cai C X, Gervasio D F. Anal. Chem., 2015, 87(23):11803.

doi: 10.1021/acs.analchem.5b03201     URL    
[8]
Zhu S J, Meng Q N, Wang L, Zhang J H, Song Y B, Jin H, Zhang K, Sun H C, Wang H Y, Yang B. Angew. Chem. Int. Ed., 2013, 52(14):3953.

doi: 10.1002/anie.v52.14     URL    
[9]
Wang Z F, Yuan F L, Li X H, Li Y C, Zhong H Z, Fan L Z, Yang S H. Adv. Mater., 2017, 29(37):1702910.

doi: 10.1002/adma.v29.37     URL    
[10]
Baragau I A, Power N P, Morgan D J, Heil T, Lobo R A, Roberts C S, Titirici M M, Dunn S, Kellici S. J. Mater. Chem. A, 2020, 8(6):3270.

doi: 10.1039/C9TA11781D     URL    
[11]
Liu Y S, Li W, Wu P, Liu S X. Progress in Chemistry, 2018, 30:349.
( 刘禹杉, 李伟, 吴鹏, 刘守新. 化学进展, 2018, 30:349.)

doi: 10.7536/PC170808    
[12]
Gu Z G, Li D J, Zheng C, Kang Y, Wöll C, Zhang J. Angew. Chem. Int. Ed., 2017, 56(24):6853.

doi: 10.1002/anie.201702162     URL    
[13]
Hou H S, Banks C E, Jing M J, Zhang Y, Ji X B. Adv. Mater., 2015, 27(47):7861.

doi: 10.1002/adma.201503816     URL    
[14]
Sun Y P, Zhou B, Lin Y, Wang W, Fernando K A S, Pathak P, Meziani M J, Harruff B A, Wang X, Wang H F, Luo P G, Yang H, Kose M E, Chen B L, Veca L M, Xie S Y. J. Am. Chem. Soc., 2006, 128(24):7756.

pmid: 16771487
[15]
Yu C H, Jiang X H, Qin D M, Mo G C, Zheng X F, Deng B Y. ACS Sustainable Chem. Eng., 2019, 7(19):16112.

doi: 10.1021/acssuschemeng.9b02886     URL    
[16]
Tong L L, Wang X X, Chen Z Z, Liang Y H, Yang Y P, Gao W, Liu Z H, Tang B. Anal. Chem., 2020, 92(9):6430.

doi: 10.1021/acs.analchem.9b05553     URL    
[17]
Li H X, Yan X, Kong D S, Jin R, Sun C Y, Du D, Lin Y H, Lu G Y. Nanoscale Horiz., 2020, 5(2):218.

doi: 10.1039/C9NH00476A     URL    
[18]
Wu X D, Zhao B, Zhang J Z, Xu H, Xu K Q, Chen G. J. Phys. Chem. C, 2019, 123(42):25570.

doi: 10.1021/acs.jpcc.9b06672     URL    
[19]
Xiao L, Sun H D. Nanoscale Horiz., 2018, 3(6):565.

doi: 10.1039/C8NH00106E     URL    
[20]
Liu G J, Wang X H, Han G T, Yu J Y, Zhao H G. Mater. Adv., 2020, 1(2):119.

doi: 10.1039/D0MA00181C     URL    
[21]
Gao J W, Wu C L, Deng D, Wu P, Cai C X. Adv. Healthcare Mater., 2016, 5(18):2437.

doi: 10.1002/adhm.v5.18     URL    
[22]
Hoang V C, Dave K, Gomes V G. Nano Energy, 2019, 66:104093.

doi: 10.1016/j.nanoen.2019.104093     URL    
[23]
Wang H, Sun P F, Cong S, Wu J, Gao L J, Wang Y, Dai X, Yi Q H, Zou G F. Nanoscale Res. Lett., 2016, 11(1):1.

doi: 10.1186/s11671-015-1209-4     URL    
[24]
Su W, Guo R H, Yuan F L, Li Y C, Li X H, Zhang Y, Zhou S X, Fan L Z. J. Phys. Chem. Lett., 2020, 11(4):1357.

doi: 10.1021/acs.jpclett.9b03891     URL    
[25]
Xie C C, Fan T T, Wang A J, Chen S L. Ind. Eng. Chem. Res., 2019, 58(1):120.

doi: 10.1021/acs.iecr.8b05101     URL    
[26]
Tang C Y, Liu C, Han Y, Guo Q Q, Ouyang W, Feng H J, Wang M Z, Xu F. Adv. Healthcare Mater., 2019, 8(10):1801534.

doi: 10.1002/adhm.v8.10     URL    
[27]
Li H T, Deng Y D, Liu Y D, Zeng X, Wiley D, Huang J. Chem. Commun., 2019, 55(30):4419.

doi: 10.1039/C9CC00830F     URL    
[28]
Fan Q, Li J H, Zhu Y H, Yang Z L, Shen T, Guo Y Z, Wang L H, Mei T, Wang J Y, Wang X B. ACS Appl. Mater. Interfaces, 2020, 12:4797.

doi: 10.1021/acsami.9b20785     URL    
[29]
Shangguan J F, Huang J, He D G, He X X, Wang K M, Ye R Z, Yang X, Qing T P, Tang J L. Anal. Chem., 2017, 89(14):7477.

doi: 10.1021/acs.analchem.7b01053     pmid: 28628302
[30]
Kalaiyarasan G, Veerapandian M, JebaMercy G, Balamurugan K, Joseph J. ACS Biomater. Sci. Eng., 2019, 5(6):3089.

doi: 10.1021/acsbiomaterials.9b00394    
[31]
Yan F Y, Bai Z J, Ma T C, Sun X D, Zu F L, Luo Y M, Chen L. Sens. Actuat. B: Chem., 2019, 296:126638.

doi: 10.1016/j.snb.2019.126638     URL    
[32]
Chen L, Yang G C, Wu P, Cai C X. Biosens. Bioelectron., 2017, 96:294.

doi: S0956-5663(17)30332-9     pmid: 28511112
[33]
Ji L J, Chen L, Wu P, Gervasio D F, Cai C X. Anal. Chem., 2016, 88(7):3935.

doi: 10.1021/acs.analchem.6b00131     URL    
[34]
Dieleman C D, Ding W Y, Wu L J, Thakur N, Bespalov I, Daiber B, Ekinci Y, Castellanos S, Ehrler B. Nanoscale, 2020, 12(20):11306.

doi: 10.1039/D0NR01077D     URL    
[35]
Srivastava S, Gajbhiye N S. ChemPhysChem, 2011, 12(14):2624.

doi: 10.1002/cphc.v12.14     URL    
[36]
Sciortino A, Marino Evan Dam B, Schall P, Cannas M, Messina F. J. Phys. Chem. Lett., 2016, 7(17):3419.

doi: 10.1021/acs.jpclett.6b01590     pmid: 27525451
[37]
Sharma A, Gadly T, Neogy S, Ghosh S K, Kumbhakar M. J. Phys. Chem. Lett., 2017, 8(5):1044.

doi: 10.1021/acs.jpclett.7b00170     pmid: 28198626
[38]
Liu E S, Li D, Zhou X J, Zhou G F, Xiao H, Zhou D, Tian P F, Guo R Q, Qu S N. ACS Sustainable Chem. Eng., 2019, 7(10):9301.

doi: 10.1021/acssuschemeng.9b00325     URL    
[39]
Feng T, Zeng Q S, Lu S Y, Yan X J, Liu J J, Tao S Y, Yang M X, Yang B. ACS Photonics, 2018, 5(2):502.

doi: 10.1021/acsphotonics.7b01010     URL    
[40]
Zhang Y Q, Zhuo P, Yin H, Fan Y, Zhang J H, Liu X Y, Chen Z Q. ACS Appl. Mater. Interfaces, 2019, 11(27):24395.

doi: 10.1021/acsami.9b04600     URL    
[41]
Dong X W, Wei L M, Su Y J, Li Z L, Geng H J, Yang C, Zhang Y F. J. Mater. Chem. C, 2015, 3(12):2798.

doi: 10.1039/C5TC00126A     URL    
[42]
Gan Z X, Xiong S J, Wu X L, Xu T, Zhu X B, Gan X, Guo J H, Shen J C, Sun L T, Chu P K. Adv. Opt. Mater., 2013, 1(12):926.

doi: 10.1002/adom.v1.12     URL    
[43]
Liang Q H, Ma W J, Shi Y, Li Z, Yang X M. Carbon, 2013, 60:421.

doi: 10.1016/j.carbon.2013.04.055     URL    
[44]
Chen L, Wu C L, Du P, Feng X W, Wu P, Cai C X. Talanta, 2017, 164:100.

doi: S0039-9140(16)30877-3     pmid: 28107902
[45]
Yeh T F, Huang W L, Chung C J, Chiang I T, Chen L C, Chang H Y, Su W C, Cheng C, Chen S J, Teng H. J. Phys. Chem. Lett., 2016, 7(11):2087.

doi: 10.1021/acs.jpclett.6b00752     pmid: 27192445
[46]
Ding H, Wei J S, Zhang P, Zhou Z Y, Gao Q Y, Xiong H M. Small, 2018, 14(22):1800612.

doi: 10.1002/smll.201800612     pmid: 29709104
[47]
Holá K, Sudolská M, Kalytchuk S, Nachtigallová D, Rogach A L, Otyepka M, Zbořil R. ACS Nano, 2017, 11(12):12402.

doi: 10.1021/acsnano.7b06399     URL    
[48]
Wang C X, Xu Z Z, Cheng H, Lin H H, Humphrey M G, Zhang C. Carbon, 2015, 82:87.

doi: 10.1016/j.carbon.2014.10.035     URL    
[49]
Wu M H, Zhan J, Geng B J, He P P, Wu K, Wang L, Xu G, Li Z, Yin L Q, Pan D Y. Nanoscale, 2017, 9(35):13195.

doi: 10.1039/C7NR04718E     URL    
[50]
Wang Y C, Jiang X E. Sci. China Chem., 2016, 59(7):836.

doi: 10.1007/s11426-016-0022-y     URL    
[51]
Yang G C, Wu C L, Luo X J, Liu X Y, Gao Y, Wu P, Cai C X, Saavedra S S. J. Phys. Chem. C, 2018, 122(11):6483.

doi: 10.1021/acs.jpcc.8b01385     URL    
[52]
Yuan F L, Yuan T, Sui L Z, Wang Z B, Xi Z F, Li Y C, Li X H, Fan L Z, Tan Z A, Chen A M, Jin M X, Yang S H. Nat. Commun., 2018, 9(1):2249.

doi: 10.1038/s41467-018-04635-5     URL    
[53]
Mai X D, Thi Kim Chi T, Nguyen T C, Ta V T. Mater. Lett., 2020, 268:127595.

doi: 10.1016/j.matlet.2020.127595     URL    
[54]
Schneider J, Reckmeier C J, Xiong Yvon Seckendorff M, Susha A S, Kasák P, Rogach A L. J. Phys. Chem. C, 2017, 121(3):2014.

doi: 10.1021/acs.jpcc.6b12519     URL    
[55]
Reckmeier C J, Schneider J, Xiong Y, Häusler J, Kasák P, Schnick W, Rogach A L. Chem. Mater., 2017, 29(24):10352.

doi: 10.1021/acs.chemmater.7b03344     URL    
[56]
Wang J L, Wang Y L, Zheng J X, Yu S P, Yang Y Z, Liu X G. Progress in Chemistry, 2018, 30:1186.
( 王军丽, 王亚玲, 郑静霞, 于世平, 杨永珍, 刘旭光. 化学进展, 2018, 30:1186.)

doi: 10.7536/PC180103    
[57]
Tang L B, Ji R B, Cao X K, Lin J Y, Jiang H X, Li X M, Teng K S, Luk C M, Zeng S J, Hao J H, Lau S P. ACS Nano, 2012, 6(6):5102.

doi: 10.1021/nn300760g     URL    
[58]
Wang Y Y, Li Y, Yan Y, Xu J, Guan B Y, Wang Q, Li J Y, Yu J H. Chem. Commun., 2013, 49(79):9006.

doi: 10.1039/c3cc43375g     URL    
[59]
Zheng L Y, Chi Y W, Dong Y Q, Lin J P, Wang B B. J. Am. Chem. Soc., 2009, 131(13):4564.

doi: 10.1021/ja809073f     URL    
[60]
Zhu H, Wang X L, Li Y L, Wang Z J, Yang F, Yang X R. Chem. Commun., 2009, (34):5118.
[61]
Dong Y Q, Zhou N N, Lin X M, Lin J P, Chi Y W, Chen G N. Chem. Mater., 2010, 22(21):5895.

doi: 10.1021/cm1018844     URL    
[62]
Xu Y, Wu M, Feng X Z, Yin X B, He X W, Zhang Y K. Chem. Eur. J., 2013, 19(20):6282.

doi: 10.1002/chem.201204372     URL    
[63]
Zhang X Y, Zhang Y, Wang Y, Kalytchuk S, Kershaw S V, Wang Y H, Wang P, Zhang T Q, Zhao Y, Zhang H Z, Cui T, Wang Y D, Zhao J, Yu W W, Rogach A L. ACS Nano, 2013, 7(12):11234.

doi: 10.1021/nn405017q     URL    
[64]
Cao L, Wang X, Meziani M J, Lu F S, Wang H F, Luo P G, Lin Y, Harruff B A, Veca L M, Murray D, Xie S Y, Sun Y P. J. Am. Chem. Soc., 2007, 129(37):11318.

pmid: 17722926
[65]
Jia X F, Li J, Wang E K. Nanoscale, 2012, 4(18):5572.

doi: 10.1039/c2nr31319g     URL    
[66]
Zong J, Zhu Y H, Yang X L, Shen J H, Li C Z. Chem. Commun., 2011, 47(2):764.

doi: 10.1039/C0CC03092A     URL    
[67]
Goryacheva I Y, Sapelkin A V, Sukhorukov G B. Trac Trends Anal. Chem., 2017, 90:27.

doi: 10.1016/j.trac.2017.02.012     URL    
[68]
Yuan F L, Wang Z B, Li X H, Li Y C, Tan Z A, Fan L Z, Yang S H. Adv. Mater., 2017, 29(3):1604436.

doi: 10.1002/adma.v29.3     URL    
[69]
Li H T, He X D, Kang Z H, Huang H, Liu Y, Liu J L, Lian S Y, Tsang C, Yang X B, Lee S T. Angewandte Chemie Int. Ed., 2010, 49(26):4430.

doi: 10.1002/anie.200906154     URL    
[70]
Zhu J Y, Bai X, Chen X, Shao H, Zhai Y, Pan G C, Zhang H Z, Ushakova E V, Zhang Y, Song H W, Rogach A L. Adv. Opt. Mater., 2019, 7(9):1801599.

doi: 10.1002/adom.v7.9     URL    
[71]
Zhi B, Cui Y, Wang S Y, Frank B P, Williams D N, Brown R P, Melby E S, Hamers R J, Rosenzweig Z, Fairbrother D H, Orr G, Haynes C L. ACS Nano, 2018, 12(6):5741.

doi: 10.1021/acsnano.8b01619     pmid: 29883099
[72]
Moniruzzaman M, Anantha Lakshmi B, Kim S, Kim J. Nanoscale, 2020, 12(22):11947.

doi: 10.1039/d0nr02225j     pmid: 32458861
[73]
Sk M A, Ananthanarayanan A, Huang L, Lim K H, Chen P. J. Mater. Chem. C, 2014, 2(34):6954.

doi: 10.1039/C4TC01191K     URL    
[74]
Eda G, Lin Y Y, Mattevi C, Yamaguchi H, Chen H A, Chen I S, Chen C W, Chhowalla M. Adv. Mater., 2010, 22(4):505.

doi: 10.1002/adma.v22:4     URL    
[75]
Ding H, Yu S B, Wei J S, Xiong H M. ACS Nano, 2016, 10(1):484.

doi: 10.1021/acsnano.5b05406     pmid: 26646584
[76]
Liu C, Wang R J, Wang B, Deng Z Q, Jin Y Z, Kang Y J, Chen J C. Microchimica Acta, 2018, 185(12):1.

doi: 10.1007/s00604-017-2562-z     URL    
[77]
Sciortino A, Gazzetto M, Soriano M L, Cannas M, Cárdenas S, Cannizzo A, Messina F. Phys. Chem. Chem. Phys., 2019, 21(30):16459.

doi: 10.1039/c9cp03063h     pmid: 31313777
[78]
Zhang W K, Liu Y Q, Meng X R, Ding T, Xu Y Q, Xu H, Ren Y R, Liu B Y, Huang J J, Yang J H, Fang X M. Phys. Chem. Chem. Phys., 2015, 17(34):22361.

doi: 10.1039/C5CP03434E     URL    
[79]
Zhao Y Y, Qu S N, Feng X Y, Xu J C, Yang Y, Su S C, Wang S P, Ng K W. J. Phys. Chem. Lett., 2019, 10(16):4596.

doi: 10.1021/acs.jpclett.9b01848     pmid: 31361140
[80]
Jiang K, Feng X Y, Gao X L, Wang Y H, Cai C Z, Li Z J, Lin H W. Nanomaterials, 2019, 9(4):529.

doi: 10.3390/nano9040529     URL    
[81]
Krysmann M J, Kelarakis A, Dallas P, Giannelis E P. J. Am. Chem. Soc., 2012, 134(2):747.

doi: 10.1021/ja204661r     pmid: 22201260
[82]
Song Y B, Zhu S J, Zhang S T, Fu Y, Wang L, Zhao X H, Yang B. J. Mater. Chem. C, 2015, 3(23):5976.

doi: 10.1039/C5TC00813A     URL    
[83]
Shamsipur M, Barati A, Taherpour A A, Jamshidi M. J. Phys. Chem. Lett., 2018, 9(15):4189.

doi: 10.1021/acs.jpclett.8b02043     pmid: 29995417
[84]
Wang T S, Wang A L, Wang R X, Liu Z Y, Sun Y, Shan G Y, Chen Y W, Liu Y C. Sci. Rep., 2019, 9(1):1.
[85]
Mishra K, Koley S, Ghosh S. J. Phys. Chem. Lett., 2019, 10(3):335.

doi: 10.1021/acs.jpclett.8b03803     URL    
[86]
Xiong Y, Schneider J, Ushakova E V, Rogach A L. Nano Today, 2018, 23:124.

doi: 10.1016/j.nantod.2018.10.010     URL    
[87]
Fu M, Ehrat F, Wang Y, Milowska K Z, Reckmeier C, Rogach A L, Stolarczyk J K, Urban A S, Feldmann J. Nano Lett., 2015, 15(9):6030.

doi: 10.1021/acs.nanolett.5b02215     URL    
[88]
Ehrat F, Bhattacharyya S, Schneider J, Löf A, Wyrwich R, Rogach A L, Stolarczyk J K, Urban A S, Feldmann J. Nano Lett., 2017, 17(12):7710.

doi: 10.1021/acs.nanolett.7b03863     URL    
[89]
Righetto M, Privitera A, Fortunati I, Mosconi D, Zerbetto M, Curri M L, Corricelli M, Moretto A, Agnoli S, Franco L, Bozio R, Ferrante C. J. Phys. Chem. Lett., 2017, 8(10):2236.

doi: 10.1021/acs.jpclett.7b00794     URL    
[90]
Shi B M, Nachtigallová D, Aquino A J A, Machado F B C, Lischka H. J. Phys. Chem. Lett., 2019, 10(18):5592.

doi: 10.1021/acs.jpclett.9b02214     URL    
[91]
Xiao L, Wang Y, Huang Y, Wong T, Sun H D. Nanoscale, 2017, 9(34):12637.

doi: 10.1039/C7NR03913A     URL    
[92]
Gazzetto M, Sciortino A, Nazari M, Rohwer E, Giammona G, Mauro N, Feurer T, Messina F, Cannizzo A. ACS Appl. Nano Mater., 2020, 3(7):6925.

doi: 10.1021/acsanm.0c01259     URL    
[93]
Chen S W, Ullah N, Zhang R Q. J. Phys. Chem. Lett., 2018, 9(17):4857.

doi: 10.1021/acs.jpclett.8b01972     URL    
[94]
Gao Y, Yu G N, Wang Y, Dang C, Sum T C, Sun H D, Demir H V. J. Phys. Chem. Lett., 2016, 7(14):2772.

doi: 10.1021/acs.jpclett.6b01122     URL    
[95]
Ghosh S, Chizhik A M, Karedla N, Dekaliuk M O, Gregor I, Schuhmann H, Seibt M, Bodensiek K, Schaap I A T, Schulz O, Demchenko A P, Enderlein J, Chizhik A I. Nano Lett., 2014, 14(10):5656.

doi: 10.1021/nl502372x     URL    
[96]
Mahat M, Rostovtsev Y, Karna S, Lim G N, D’Souza F, Neogi A. ACS Photonics, 2018, 5(2):614.

doi: 10.1021/acsphotonics.7b01188     URL    
[97]
Malyukin Y, Viagin O, Maksimchuk P, Dekaliuk M, Demchenko A. Nanoscale, 2018, 10(19):9320.

doi: 10.1039/c8nr02296h     pmid: 29737346
[98]
Su Y, Xie Z G, Zheng M. J. Colloid Interface Sci., 2020, 573:241.

doi: 10.1016/j.jcis.2020.04.004     URL    
[99]
Anjali Devi J S, Aparna R S, Anjana R R, Nebu J, Anju S M, George S. J. Phys. Chem. A, 2019, 123(34):7420.

doi: 10.1021/acs.jpca.9b04568     pmid: 31373812
[100]
Chen Y C, Lam J W Y, Kwok R T K, Liu B, Tang B Z. Mater. Horiz., 2019, 6(3):428.

doi: 10.1039/C8MH01331D     URL    
[101]
Yang H Y, Liu Y L, Guo Z Y, Lei B F, Zhuang J L, Zhang X J, Liu Z M, Hu C F. Nat. Commun., 2019, 10(1):1.

doi: 10.1038/s41467-018-07882-8     URL    
[102]
Yan F Y, Jiang Y X, Sun X D, Wei J F, Chen L, Zhang Y Y. Nano Res., 2020, 13(1):52.

doi: 10.1007/s12274-019-2569-3     URL    
[103]
Chen Y Q, Lian H Z, Wei Y, He X, Chen Y, Wang B, Zeng Q G, Lin J. Nanoscale, 2018, 10(14):6734.

doi: 10.1039/C8NR00204E     URL    
[104]
Liu Z X, Zou H Y, Wang N, Yang T, Peng Z W, Wang J, Li N, Huang C Z. Sci. China Chem., 2018, 61(4):490.

doi: 10.1007/s11426-017-9172-0     URL    
[105]
Ding Y F, Zheng J X, Wang J L, Yang Y Z, Liu X G. J. Mater. Chem. C, 2019, 7(6):1502.

doi: 10.1039/C8TC04887H     URL    
[106]
Stepanidenko E A, Arefina I A, Khavlyuk P D, Dubavik A, Bogdanov K V, Bondarenko D P, Cherevkov S A, Kundelev E V, Fedorov A V, Baranov A V, Maslov V G, Ushakova E V, Rogach A L. Nanoscale, 2020, 12(2):602.

doi: 10.1039/c9nr08663c     pmid: 31828268
[107]
Basu N, Mandal D. J. Phys. Chem. C, 2018, 122(32):18732.

doi: 10.1021/acs.jpcc.8b04601     URL    
[108]
Tepliakov N V, Kundelev E V, Khavlyuk P D, Xiong Y, Leonov M Y, Zhu W R, Baranov A V, Fedorov A V, Rogach A L, Rukhlenko I D. ACS Nano, 2019, 13(9):10737.

doi: 10.1021/acsnano.9b05444     pmid: 31411860
[109]
Wang H, Sun C, Chen X R, Zhang Y, Colvin V L, Rice Q, Seo J, Feng S Y, Wang S N, Yu W W. Nanoscale, 2017, 9(5):1909.

doi: 10.1039/c6nr09200d     pmid: 28094404
[110]
Gao D, Liu X L, Jiang D L, Zhao H, Zhu Y D, Chen X Q, Luo H R, Fan H S, Zhang X D. Sens. Actuat. B: Chem., 2018, 277:373.

doi: 10.1016/j.snb.2018.09.031     URL    
[111]
Sato K, Sato R, Iso Y, Isobe T. Chem. Commun., 2020, 56(14):2174.

doi: 10.1039/C9CC09333H     URL    
[112]
Wang H, Haydel P, Sui N, Wang L N, Liang Y, Yu W W. Nano Res., 2020, 13(9):2492.

doi: 10.1007/s12274-020-2884-8     URL    
[113]
Khan S, Gupta A, Verma N C, Nandi C K. Nano Lett., 2015, 15(12):8300.

doi: 10.1021/acs.nanolett.5b03915     URL    
[114]
Bai J L, Ma Y S, Yuan G J, Chen X, Mei J, Zhang L, Ren L L. J. Mater. Chem. C, 2019, 7(31):9709.

doi: 10.1039/C9TC02422K     URL    
[115]
Yoshinaga T, Akiu M, Iso Y, Isobe T. J. Lumin., 2020, 224:117260.

doi: 10.1016/j.jlumin.2020.117260     URL    
[1] 何静, 陈佳, 邱洪灯. 中药碳点的合成及其在生物成像和医学治疗方面的应用[J]. 化学进展, 2023, 35(5): 655-682.
[2] 鄢剑锋, 徐进栋, 张瑞影, 周品, 袁耀锋, 李远明. 纳米碳分子——合成化学的魅力[J]. 化学进展, 2023, 35(5): 699-708.
[3] 杨孟蕊, 谢雨欣, 朱敦如. 化学稳定金属有机框架的合成策略[J]. 化学进展, 2023, 35(5): 683-698.
[4] 王新月, 金康. 多肽及蛋白质的化学合成研究[J]. 化学进展, 2023, 35(4): 526-542.
[5] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[6] 龚智华, 胡莎, 金学平, 余磊, 朱园园, 古双喜. 磷酸酯类前药的合成方法与应用[J]. 化学进展, 2022, 34(9): 1972-1981.
[7] 林业竣, 李艳梅. 翻译后修饰Tau蛋白及其化学全/半合成[J]. 化学进展, 2022, 34(8): 1645-1660.
[8] 宝利军, 危俊吾, 钱杨杨, 王雨佳, 宋文杰, 毕韵梅. 酶响应性线形-树枝状嵌段共聚物的合成、性能及应用[J]. 化学进展, 2022, 34(8): 1723-1733.
[9] 徐鹏, 俞飚. 聚糖化学合成的挑战和可能的凝聚态化学问题[J]. 化学进展, 2022, 34(7): 1548-1553.
[10] 李诗宇, 阴永光, 史建波, 江桂斌. 共价有机框架在水中二价汞吸附去除中的应用[J]. 化学进展, 2022, 34(5): 1017-1025.
[11] 王鹏, 刘欢, 杨妲. 烯烃的氢甲酰化串联反应研究[J]. 化学进展, 2022, 34(5): 1076-1087.
[12] 马晓清. 石墨炔在光催化及光电催化中的应用[J]. 化学进展, 2022, 34(5): 1042-1060.
[13] 赵聪媛, 张静, 陈铮, 李建, 舒烈琳, 纪晓亮. 基于电活性菌群的生物电催化体系的有效构筑及其强化胞外电子传递过程的应用[J]. 化学进展, 2022, 34(2): 397-410.
[14] 闫保有, 李旭飞, 黄维秋, 王鑫雅, 张镇, 朱兵. 氨/醛基金属有机骨架材料合成及其在吸附分离中的应用[J]. 化学进展, 2022, 34(11): 2417-2431.
[15] 杨林颜, 郭宇鹏, 李正甲, 岑洁, 姚楠, 李小年. 钴基费托合成催化剂的表界面性质调控[J]. 化学进展, 2022, 34(10): 2254-2266.
阅读次数
全文


摘要

碳量子点的荧光发射机制