English
新闻公告
More
化学进展 2021, Vol. 33 Issue (5): 767-778 DOI: 10.7536/PC200616 前一篇   后一篇

• 研究论文 •

基于3D导电材料的柔性应力/应变传感器

范路洁1, 陈莉1(), 何崟1, 刘皓1,2,*   

  1. 1 天津工业大学纺织科学与工程学院 天津 300387
    2 天津工业大学智能可穿戴电子纺织品研究所 天津 300387
  • 收稿日期:2020-06-05 修回日期:2020-09-02 出版日期:2021-05-20 发布日期:2020-12-22
  • 通讯作者: 刘皓
  • 作者简介:
    * Corresponding author e-mail:
  • 基金资助:
    国家自然科学基金项目(51473122); 中国博士后科学基金项目(2016M591390); 天津市自然科学基金面上项目(18JCYBJC18500)

Flexible Pressure/Strain Sensors Based on 3D Conductive Materials

Lujie Fan1, Li Chen1(), Yin He1, Hao Liu1,2,*   

  1. 1 School of Textile Science and Engineering, TianGong University, Tianjin 300387, China
    2 Intelligent Wearable Electronic Textile Research Institute, TianGong University, Tianjin 300387, China
  • Received:2020-06-05 Revised:2020-09-02 Online:2021-05-20 Published:2020-12-22
  • Contact: Hao Liu
  • Supported by:
    National Natural Science Foundation of China(51473122); Postdoctoral Science Foundation of China(2016M591390); Natural Science Foundation of Tianjin(18JCYBJC18500)

柔性应力/应变传感器作为智能可穿戴设备的重要组成部分,在人体运动检测、健康监测、机器人和电子皮肤等方面得到了广泛应用。其中,3D导电材料(如气凝胶、海绵和泡沫等)不仅拥有3D互连微结构,还具有优异的可压缩性和导电性,在一定程度上解决了传感器同时拥有高灵敏度和宽检测限的难题。本文根据制备3D导电材料的原材料将其划分为生物质材料、碳材料、聚合物材料、金属纳米材料以及MXene材料五种类型;并总结了3D导电材料的制备方法及其在传感器应用领域的创新与发展;最后讨论了基于3D导电材料的柔性应力/应变传感器的发展前景。

As an important part of intelligent wearable device, flexible pressure/strain sensors are widely used in human motion detection, health monitoring, robot and electronic skin. Among them, 3D conductive materials(such as aerogels, sponges and foams) have 3D interconnection microstructures and have excellent compressibility and conductivity, which bring a breakthrough that enables sensors to have high sensitivity and wide range. According to the raw materials for the preparation of 3D conductive materials, this article divides them into five types: biomass materials, carbon materials, polymer materials, metal nanomaterials, and MXene materials. Then, the preparation methods of 3D conductive materials and their innovation and development in the field of sensor applications are summarized. Finally, the prospect of flexible strain/pressure sensors based on 3D materials is discussed.

Contents

1 Introduction

2 Basic characteristics of flexible strain/pressure sensors

3 Preparation of 3D material and its application in flexible strain/pressure sensors

3.1 3D biomass materials

3.2 3D carbon materials

3.3 3D polymer materials

3.4 3D metal nanomaterials

3.5 3D Mexene materials

4 Application

5 Conclusion and prospect

()
图1 基于三维材料的柔性应力/应变传感器传感示意图(a)电阻式(b)电容式
Fig. 1 Schematic diagram of flexible pressure/strain sensor sensing based on three-dimensional material(a) resistive(b) capacitive
表1 基于3D生物质材料柔性应力/应变传感器的总结
Table 1 Summary of flexible pressure/strain sensors based on 3D biomass materials
图2 (a)PEDOT:PSS/CNF气凝胶的制备[50]. (b)KGM/SiO2复合气凝胶实物图与电镜图[52]
Fig. 2 (a) Preparation of PEDOT: PSS/CNF aerogel[50]. Copyright 2018, American Chemical Society(b) An optical photograph and SEM images of KGM/SiO2 composite aerogel[52]. Copyright 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
表2 基于3D碳材料的柔性应力/应变传感器的总结
Table 2 Summary of flexible pressure/strain sensors based on 3D carbon materials
图3 (a)定向冻结法制备CNC/GO-X气凝胶流程[58].(b)3D打印法制备碳气凝胶[61]
Fig. 3 (a) Process of preparing CNC/GO-X aerogel by directional freezing method[58]. Copyright 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.(b) Preparation of carbon aerogel by 3D printing [61].Copyright 2018, Spring Nature
表3 基于3D聚合物材料的柔性应变/应力传感器总结
Table 3 Summary of flexible pressure/strain sensors based on 3D polymer materials
图4 不同模板制备的PDMS海绵SEM图像:(a)方糖[71].(b)PS球[72].(c)3D打印[73]
Fig. 4 SEM images of PDMS sponge prepared with different templates:(a) Sugar cube[71]. Copyright 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.(b) PS bead [72]. Copyright 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.(c) 3D printing [73] Copyright 2016, American Chemical Society
图5 TPU/CNS海绵的制备流程[68]
Fig. 5 Process of preparing TPU/CNS sponge[68]. Copyright 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
表4 基于3D金属纳米材料的柔性应力/应变传感器总结
Table 4 Summary of flexible pressure/strain sensors based on 3D metal nanomaterials
表5 基于3DMxene材料的柔性应力/应变传感器总结
Table 5 Summary of flexible pressure/strain sensor based on 3D Mxene material
图6 (a,b) 传感器用于检测脉搏和呼吸[45];(c~f) 传感器用于检测表情、关节运动以及发声[93]
Fig. 6 (a,b) Sensor for detecting pulse and breathing[45]. Copyright 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim;(c~f) Sensors for detecting expressions, joint movement, and vocalization [93]. Copyright 2018, American Chemical Society
图7 (a)传感器在电子皮肤方向的应用[63];(b)传感器在机器人方向的应用[95]
Fig. 7 (a)Application of sensors in the direction of electronic skin[63]. Copyright 2019, American Chemical Society.(b) Application of sensors in the direction of robot[95]. Copyright 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
[1]
Chen J, Zheng J H, Gao Q W, Zhang J J, Zhang J Y, Omisore O, Wang L, Li H. Appl. Sci., 2018, 8(3):345.

doi: 10.3390/app8030345     URL    
[2]
Wang J, Lou Y Y, Wang B, Sun Q, Zhou M W, Li X Y. Sensors, 2020, 20(9):2459.

doi: 10.3390/s20092459     URL    
[3]
Xiong Y X, Shen Y K, Tian L, Hu Y G, Zhu P L, Sun R, Wong C P. Nano Energy, 2020, 70:104436.

doi: 10.1016/j.nanoen.2019.104436     URL    
[4]
Li P, Zhao L B, Jiang Z D, Yu M Z, Li Z, Zhou X Y, Zhao Y L. Sci. Rep., 2019, 9:14457.

doi: 10.1038/s41598-019-50997-1     URL    
[5]
Chen C, Wang Z Y, Li W, Chen H Y, Mei Z N, Yuan W, Tao L K, Zhao Y T, Huang G S, Mei Y F, Cao Z R, Wang R R, Chen W. IEEE Sensor J., 2019, 19(19):8502.

doi: 10.1109/JSEN.7361     URL    
[6]
Wang X W, Gu Y, Xiong Z P, Cui Z, Zhang T. Adv. Mater., 2014, 26(9):1336.

doi: 10.1002/adma.201304248     URL    
[7]
Han S J, Liu C R, Huang Z B, Zheng J W, Xu H H, Chu S, Wu J, Liu C. Adv. Mater. Technol., 2019, 4(5):1800640.

doi: 10.1002/admt.v4.5     URL    
[8]
Chang S N, Li J, He Y, Liu H, Cheng B W. Sensor Actuat. A: Phys., 2019, 294:45.

doi: 10.1016/j.sna.2019.05.011     URL    
[9]
Xiao Z J, Zhou W Y, Zhang N, Zhang Q, Xia X G, Gu X G, Wang Y C, Xie S S. Small, 2019, 15(13):1804779.

doi: 10.1002/smll.v15.13     URL    
[10]
Lu W D, Yu P, Jian M Q, Wang H M, Wang H M, Liang X P, Zhang Y Y. ACS Appl. Mater. Interfaces, 2020, 12(10):11825.

doi: 10.1021/acsami.9b21068     URL    
[11]
Montazerian H, Rashidi A, Dalili A, Najjaran H, Milani A S, Hoorfar M. Small, 2019, 15(17):1804991.

doi: 10.1002/smll.201804991     pmid: 30919566
[12]
He X W, Liu Q Z, Zhong W B, Chen J H, Sun D M, Jiang H Q, Liu K, Wang W W, Wang Y D, Lu Z T, Li M F, Liu X, Wang X J, Sun G, Wang D. ACS Appl. Mater. Interfaces, 2019, 11(21):19350.

doi: 10.1021/acsami.9b02591     URL    
[13]
He Y, Zhao L D, Wang X J, Liu L Y, Liu H. Nanotechnology, 2020, 31(18):185502.

doi: 10.1088/1361-6528/ab6cd8     URL    
[14]
Kou H R, Zhang L, Tan Q L, Liu G Y, Dong H L, Zhang W D, Xiong J J. Sci. Rep., 2019, 9:3916.

doi: 10.1038/s41598-019-40828-8     URL    
[15]
Qiu J, Guo X H, Chu R, Wang S L, Zeng W, Qu L, Zhao Y N, Yan F, Xing G Z. ACS Appl. Mater. Interfaces, 2019, 11(43):40716.

doi: 10.1021/acsami.9b16511     URL    
[16]
Shi K M, Huang X Y, Sun B, Wu Z Y, He J L, Jiang P K. Nano Energy, 2019, 57:450.

doi: 10.1016/j.nanoen.2018.12.076     URL    
[17]
Beyranvand M, Gholizadeh A. Curr. Appl. Phys., 2020, 20(1):226.

doi: 10.1016/j.cap.2019.11.009     URL    
[18]
Choong C L, Shim M B, Lee B S, Jeon S, Ko D S, Kang T H, Bae J, Lee S H, Byun K E, Im J, Jeong Y J, Park C E, Park J J, Chung U I. Adv. Mater., 2014, 26(21):3451.

doi: 10.1002/adma.v26.21     URL    
[19]
Pang C, Lee G Y, Kim T I, Kim S M, Kim H N, Ahn S H, Suh K Y. Nat. Mater., 2012, 11(9):795.

doi: 10.1038/nmat3380     URL    
[20]
dos Santos A, Pinela N, Alves P, Santos R, Farinha R, Fortunato E, Martins R, Águas H, Igreja R. Sensors, 2019, 19(4):899.

doi: 10.3390/s19040899     URL    
[21]
Zou Q, Zheng J, Su Q, Wang W L, Gao W, Ma Z M. Sensor Actuat. A: Phys., 2019, 300:111658.

doi: 10.1016/j.sna.2019.111658     URL    
[22]
Yang C F, Li L L, Zhao J X, Wang J J, Xie J X, Cao Y P, Xue M Q, Lu C H. ACS Appl. Mater. Interfaces, 2018, 10(30):25811.

doi: 10.1021/acsami.8b08666     URL    
[23]
Jia W D, Zhang Q, Cheng Y Q, Zhao D, Liu Y, Zhang W D, Sang S B. Nano, 2019, 14(7):1950081.

doi: 10.1142/S1793292019500814     URL    
[24]
Sun X G, Sun J H, Zheng S K, Wang C K, Tan W S, Zhang J G, Liu C X, Liu C, Li T, Qi Z M, Xue N. Nanomaterials, 2019, 9(5):779.

doi: 10.3390/nano9050779     URL    
[25]
Ding Y C, Xu T, Onyilagha O, Fong H, Zhu Z T. ACS Appl. Mater. Interfaces, 2019, 11(7):6685.

doi: 10.1021/acsami.8b20929     URL    
[26]
Hu Y J, Chen Z H, Zhuo H, Zhong L X, Peng X W, Sun R C. Adv. Funct. Mater., 2019, 29(44):1904472.

doi: 10.1002/adfm.v29.44     URL    
[27]
Yang J, Li Y, Zheng Y Y, Xu Y M, Zheng Z K, Chen X D, Liu W. Small, 2019, 15(41):1902826.

doi: 10.1002/smll.v15.41     URL    
[28]
Dai L, Wang Y, Zou X J, Chen Z R, Liu H, Ni Y H. Small, 2020, 16(13):1906567.

doi: 10.1002/smll.v16.13     URL    
[29]
Chen S, Song Y J, Xu F. ACS Appl. Mater. Interfaces, 2018, 10(40):34646.

doi: 10.1021/acsami.8b13535     URL    
[30]
Wang C Y, Xia K L, Jian M Q, Wang H M, Zhang M C, Zhang Y Y. J. Mater. Chem. C, 2017, 5(30):7604.

doi: 10.1039/C7TC01962A     URL    
[31]
Zhang L, Li H Q, Lai X J, Gao T Y, Liao X F, Chen W J, Zeng X R. Cellulose, 2019, 26(8):5001.

doi: 10.1007/s10570-019-02432-x    
[32]
Gao L B, Fan R, Zhou W Z, Hu X K, Cao K, Wang W D, Lu Y. Adv. Electron. Mater., 2019, 5(12):1900353.

doi: 10.1002/aelm.v5.12     URL    
[33]
Sengupta D, Pei Y T, Kottapalli A G P. ACS Appl. Mater. Interfaces, 2019, 11(38):35201.

doi: 10.1021/acsami.9b11776     URL    
[34]
Zhong W B, Jiang H Q, Yang L Y, Yadav A, Ding X C, Chen Y L, Li M F, Sun G, Wang D. Polymers, 2019, 11(11):1883.

doi: 10.3390/polym11111883     URL    
[35]
Pan J J, Yang M Y, Luo L, Xu A C, Tang B, Cheng D S, Cai G M, Wang X. ACS Appl. Mater. Interfaces, 2019, 11(7):7338.

doi: 10.1021/acsami.8b18823     URL    
[36]
Huang J Y, Li D W, Zhao M, Ke H Z, Mensah A, Lv P, Tian X J, Wei Q F. Chem. Eng. J., 2019, 373:1357.

doi: 10.1016/j.cej.2019.05.136     URL    
[37]
Luo W Y, Charara M, Saha M C, Liu Y T. Appl. Nanosci., 2019, 9(6):1309.

doi: 10.1007/s13204-019-00958-x     URL    
[38]
Sun Y, Du Z Q. Nanomaterials, 2019, 9(7):945.

doi: 10.3390/nano9070945     URL    
[39]
Jeong H, Noh Y, Ko S H, Lee D. Compos. Sci. Technol., 2019, 174:50.

doi: 10.1016/j.compscitech.2019.01.028     URL    
[40]
Zhu G J, Ren P G, Guo H, Jin Y L, Yan D X, Li Z M. ACS Appl. Mater. Interfaces, 2019, 11(26):23649.

doi: 10.1021/acsami.9b08611     URL    
[41]
Song D K, Li X F, Li X P, Jia X Q, Min P, Yu Z Z. J. Colloid Interface Sci., 2019, 555:751.

doi: 10.1016/j.jcis.2019.08.020     URL    
[42]
Sharma S, Chhetry A, Sharifuzzaman M, Yoon H, Park J Y. ACS Appl. Mater. Interfaces, 2020, 12(19):22212.

doi: 10.1021/acsami.0c05819     URL    
[43]
Tan H, Tao Q, Pande I, Majumdar S, Liu F, Zhou Y, Persson P O A, Rosen J, van Dijken S. Nat. Commun, 2020, 11(1):1369.

doi: 10.1038/s41467-020-15105-2     URL    
[44]
Xu S M, Li X Y, Sui G P, Du R N, Zhang Q, Fu Q. Chem. Eng. J., 2020, 381:122666.

doi: 10.1016/j.cej.2019.122666     URL    
[45]
Huang Y, Chen Y, Fan X Y, Luo N Q, Zhou S, Chen S C, Zhao N, Wong C P. Small, 2018, 14(31):1801520.

doi: 10.1002/smll.v14.31     URL    
[46]
Wang K L, Liu X R, Tan Y, Zhang W, Zhang S F, Li J Z. Chem. Eng. J., 2019, 371:769.

doi: 10.1016/j.cej.2019.04.108     URL    
[47]
Zhang Q, Chen C J, Chen W S, Pastel G, Guo X Y, Liu S X, Wang Q W, Liu Y X, Li J, Yu H P, Hu L B. ACS Appl. Mater. Interfaces, 2019, 11(6):5919.

doi: 10.1021/acsami.8b17414     URL    
[48]
Song H Y, Xu S M, Li Y J, Dai J Q, Gong A, Zhu M W, Zhu C L, Chen C J, Chen Y N, Yao Y G, Liu B Y, Song J W, Pastel G, Hu L B. Adv. Energy Mater., 2018, 8(4):1701203.

doi: 10.1002/aenm.v8.4     URL    
[49]
Hondo H, Saito T, Isogai A. Cellulose, 2019, 26(5):3021.

doi: 10.1007/s10570-019-02311-5     URL    
[50]
Zhou J, Hsieh Y L. ACS Appl. Mater. Interfaces, 2018, 10(33):27902.

doi: 10.1021/acsami.8b10239     URL    
[51]
Luo M Y, Li M F, Li Y Q, Chang K Q, Liu K, Liu Q Z, Wang Y D, Lu Z T, Liu X, Wang D. Compos. Commun., 2017, 6:68.

doi: 10.1016/j.coco.2017.10.001     URL    
[52]
Si Y, Wang X Q, Yan C C, Yang L, Yu J Y, Ding B. Adv. Mater., 2016, 28(43):9512.

doi: 10.1002/adma.201603143    
[53]
Chen C J, Song J W, Zhu S Z, Li Y J, Kuang Y D, Wan J Y, Kirsch D, Xu L S, Wang Y B, Gao T T, Wang Y L, Huang H, Gan W T, Gong A, Li T, Xie J, Hu L B. Chem, 2018, 4(3):544.

doi: 10.1016/j.chempr.2017.12.028     URL    
[54]
Hosseini H, Kokabi M, Mousavi S M. Carbohydr. Polym., 2018, 201:228.

doi: S0144-8617(18)30952-4     pmid: 30241815
[55]
Liu Y W, Zheng H J, Liu M X. Mater. Des., 2018, 141:276.

doi: 10.1016/j.matdes.2017.12.046     URL    
[56]
Li Y L. Science, 2004, 304(5668):276.

doi: 10.1126/science.1094982     URL    
[57]
Huang Z M, Liu X Y, Wu W G, Li Y Q, Wang H. J. Mater. Sci., 2017, 52(20):12540.

doi: 10.1007/s10853-017-1374-1     URL    
[58]
Zhuo H, Hu Y J, Tong X, Chen Z H, Zhong L X, Lai H H, Liu L X, Jing S S, Liu Q Z, Liu C F, Peng X W, Sun R C. Adv. Mater., 2018, 30(18):1706705.

doi: 10.1002/adma.201706705     URL    
[59]
Peng X W, Wu K Z, Hu Y J, Zhuo H, Chen Z H, Jing S S, Liu Q Z, Liu C F, Zhong L X. J. Mater. Chem. A, 2018, 6(46):23550.

doi: 10.1039/C8TA09322A     URL    
[60]
Zhang W Q, Yin B, Wang J, Mohamed A, Jia H B. J. Alloy. Compd., 2019, 785:1001.

doi: 10.1016/j.jallcom.2019.01.294     URL    
[61]
Guo F, Jiang Y Q, Xu Z, Xiao Y H, Fang B, Liu Y J, Gao W W, Zhao P, Wang H T, Gao C. Nat. Commun., 2018, 9:881.

doi: 10.1038/s41467-018-03268-y     pmid: 29491395
[62]
Chen X Y, Liu H, Zheng Y J, Zhai Y, Liu X H, Liu C T, Mi L W, Guo Z H, Shen C Y. ACS Appl. Mater. Interfaces, 2019, 11(45):42594.

doi: 10.1021/acsami.9b14688     URL    
[63]
Zu G Q, Kanamori K, Nakanishi K, Huang J. Chem. Mater., 2019, 31(16):6276.

doi: 10.1021/acs.chemmater.9b02437     URL    
[64]
van Aken K L, Pérez C R, Oh Y, Beidaghi M, Joo Jeong Y, Islam M F, Gogotsi Y. Nano Energy, 2015, 15:662.

doi: 10.1016/j.nanoen.2015.05.028     URL    
[65]
Kim Y, Jang S, Oh J H. Microelectron. Eng., 2019, 215:111002.

doi: 10.1016/j.mee.2019.111002     URL    
[66]
Zhang S D, Liu H, Yang S Y, Shi X Z, Zhang D B, Shan C X, Mi L W, Liu C T, Shen C Y, Guo Z H. ACS Appl. Mater. Interfaces, 2019, 11(11):10922.

doi: 10.1021/acsami.9b00900     URL    
[67]
Wu Y H, Liu H Z, Chen S, Dong X C, Wang P P, Liu S Q, Lin Y, Wei Y, Liu L. ACS Appl. Mater. Interfaces, 2017, 9(23):20098.

doi: 10.1021/acsami.7b04605     URL    
[68]
Sang Z, Ke K, Manas-Zloczower I. Small, 2019, 15(45):1903487.

doi: 10.1002/smll.v15.45     URL    
[69]
Huang J, Wang H, Liang B, Etim U J, Liu Y, Li Y, Yan Z. Chem. Eng. J, 2019, 364:28.

doi: 10.1016/j.cej.2019.01.071     URL    
[70]
Liu W J, Liu N S, Yue Y, Rao J Y, Luo C, Zhang H, Yang C X, Su J, Liu Z T, Gao Y H. J. Mater. Chem. C, 2018, 6(6):1451.

doi: 10.1039/C7TC05228F     URL    
[71]
Charara M, Luo W Y, Saha M C, Liu Y T. Adv. Eng. Mater., 2019, 21(5):1801068.

doi: 10.1002/adem.v21.5     URL    
[72]
Kang S B, Lee J, Lee S, Kim S, Kim J K, Algadi H, Al-Sayari S, Kim D E, Kim D, Lee T. Adv. Electron. Mater., 2016, 2(12):1600356.

doi: 10.1002/aelm.v2.12     URL    
[73]
Duan S, Yang K, Wang Z, Chen M, Zhang L, Zhang H, Li C. ACS Appl. Mater. Interfaces, 2016, 8(3):2187.

doi: 10.1021/acsami.5b10791     URL    
[74]
Ding Y C, Yang J, Tolle C R, Zhu Z T. ACS Appl. Mater. Interfaces, 2018, 10(18):16077.

doi: 10.1021/acsami.8b00457     URL    
[75]
Zhao S F, Han F, Li J H, Meng X Y, Huang W P, Cao D X, Zhang G P, Sun R, Wong C P. Small, 2018, 14(26):1800047.

doi: 10.1002/smll.v14.26     URL    
[76]
Weng C X, Dai Z H, Wang G R, Liu L Q, Zhang Z. ACS Appl. Mater. Interfaces, 2019, 11(6):6541.

doi: 10.1021/acsami.8b19890     URL    
[77]
Zhao S, Zhu R. Adv. Mater. Technol., 2019, 4(9):1900414.

doi: 10.1002/admt.v4.9     URL    
[78]
Xu X J, Wang R R, Nie P, Cheng Y, Lu X Y, Shi L J, Sun J. ACS Appl. Mater. Interfaces, 2017, 9(16):14273.

doi: 10.1021/acsami.7b02087     URL    
[79]
Wu S T, Zou M C, Shi X W, Yuan Y J, Bai W F, Ding M Y, Cao A Y. Adv. Mater. Technol., 2019, 4(10):1900470.

doi: 10.1002/admt.v4.10     URL    
[80]
Meng X Y, Zhao S F, Zhang Z, Zhang R L, Li J H, Leng J F, Cao D X, Zhang G P, Sun R. J. Mater. Chem. C, 2019, 7(23):7061.

doi: 10.1039/C9TC00943D     URL    
[81]
Nguyen V T, Min B K, Yi Y, Kim S J, Choi C G. Chem. Eng. J., 2020, 393:124608.

doi: 10.1016/j.cej.2020.124608     URL    
[82]
Meng J N, Zhang F F, Zhang L, Liu L Y, Chen J T, Yang B J, Yan X B. J. Energy Chem., 2020, 46:256.

doi: 10.1016/j.jechem.2019.10.008     URL    
[83]
Li J M, Zhao L, Wang S M, Li J, Wang G H, Wang J. Appl. Surf. Sci., 2020, 515:145922.

doi: 10.1016/j.apsusc.2020.145922     URL    
[84]
Wang W D, Jiang D M, Chen X, Xie K, Jiang Y H, Wang Y Q. Appl. Surf. Sci., 2020, 515:145982.

doi: 10.1016/j.apsusc.2020.145982     URL    
[85]
Zhang A T, Liu R, Tian J M, Huang W G, Liu J Q. Chem. Eur. J., 2020, 26(29):6342.

doi: 10.1002/chem.v26.29     URL    
[86]
Ma Y N, Liu N S, Li L Y, Hu X K, Zou Z G, Wang J B, Luo S J, Gao Y H. Nat. Commun., 2017, 8:1207.

doi: 10.1038/s41467-017-01136-9     URL    
[87]
Zhuo H, Hu Y J, Chen Z H, Peng X W, Liu L X, Luo Q S, Yi J W, Liu C F, Zhong L X. J. Mater. Chem. A, 2019, 7(14):8092.

doi: 10.1039/c9ta00596j    
[88]
Chen Z H, Hu Y J, Zhuo H, Liu L X, Jing S S, Zhong L X, Peng X W, Sun R C. Chem. Mater., 2019, 31(9):3301.

doi: 10.1021/acs.chemmater.9b00259     URL    
[89]
Yue Y, Liu N S, Liu W J, Li M, Ma Y N, Luo C, Wang S L, Rao J Y, Hu X K, Su J, Zhang Z, Huang Q, Gao Y H. Nano Energy, 2018, 50:79.

doi: 10.1016/j.nanoen.2018.05.020     URL    
[90]
Li X P, Li Y, Li X F, Song D K, Min P, Hu C, Zhang H B, Koratkar N, Yu Z Z. J. Colloid Interface Sci., 2019, 542:54.

doi: 10.1016/j.jcis.2019.01.123     URL    
[91]
Zhu M, Yue Y, Cheng Y F, Zhang Y N, Su J, Long F, Jiang X L, Ma Y N, Gao Y H. Adv. Electron. Mater., 2020, 6(2):1901064.

doi: 10.1002/aelm.v6.2     URL    
[92]
Amjadi M, Kyung K U, Park I, Sitti M. Adv. Funct. Mater., 2016, 26(11):1678.

doi: 10.1002/adfm.v26.11     URL    
[93]
Hu Y J, Zhuo H, Chen Z H, Wu K Z, Luo Q S, Liu Q Z, Jing S S, Liu C F, Zhong L X, Sun R C, Peng X W. ACS Appl. Mater. Interfaces, 2018, 10(47):40641.

doi: 10.1021/acsami.8b15439     URL    
[94]
Miao P, Wang J, Zhang C C, Sun M Y, Cheng S S, Liu H. Nano-Micro Lett., 2019, 11:71.
[95]
Sencadas V, Tawk C, Alici G. Adv. Mater. Technol., 2019, 4(10):1900423.

doi: 10.1002/admt.v4.10     URL    
[96]
Zhang Y Z, Lin Z K, Huang X P, You X J, Ye J H, Wu H B. Smart Mater. Struct., 2019, 28(10):105023.

doi: 10.1088/1361-665X/ab3a0c     URL    
No related articles found!