English
新闻公告
More
化学进展 2021, Vol. 33 Issue (2): 263-280 DOI: 10.7536/PC200457 前一篇   后一篇

• 综述 •

FeOCl层状材料及其插层化合物:结构、性质与应用

王金岭1,2, 温玉真2, 汪华林1,2, 刘洪来1,2, 杨雪晶1,2,*()   

  1. 1 华东理工大学 化学工程联合国家重点实验室 上海 200237
    2 华东理工大学 高浓度难降解有机废水处理技术国家工程实验室 上海 200237
  • 收稿日期:2020-04-27 修回日期:2020-09-24 出版日期:2021-02-24 发布日期:2020-10-15
  • 通讯作者: 杨雪晶
  • 基金资助:
    国家自然科学基金项目(21876049); 国家自然科学基金项目(91834301); 国家重点研发计划(2019YFC1906700)

FeOCl and Its Intercalation Compounds: Structures, Properties and Applications

Jinling Wang1,2, Yuzhen Wen2, Hualin Wang1,2, Honglai Liu1,2, Xuejing Yang1,2,*()   

  1. 1 State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
    2 National Engineering Laboratory for Industrial Wastewater Treatment, East China University of Science and Technology,Shanghai 200237, China
  • Received:2020-04-27 Revised:2020-09-24 Online:2021-02-24 Published:2020-10-15
  • Contact: Xuejing Yang
  • About author:
    * Corresponding author e-mail:
  • Supported by:
    National Natural Science Foundation of China(21876049); National Natural Science Foundation of China(91834301); National Key R&D Program of China(2019YFC1906700)

氧基氯化铁(FeOCl)是一种典型的Fe基层状材料,于20世纪30年代被发现,并于20世纪70年代起作为一种优异的插层主体在超分子插层化学领域进行了大量的研究。FeOCl的层状结构赋予了其远比传统铁(氢)氧化物更加灵活的调变空间,自2013年第一次发现FeOCl具有优异的固体Fenton活性以来,围绕FeOCl及其插层化合物在催化、能源等领域涌现了大量的应用性研究,展现了其巨大的发展潜力。本文首先对FeOCl及其几种典型的插层体系进行了介绍,重点对插层诱导的FeOCl晶体和电子结构变化进行了讨论,然后对FeOCl及其插层化合物在水中污染物高级氧化降解、电极材料以及其他新兴领域的应用研究进展进行了综述。最后,从FeOCl的结构设计和稳定性等方面对其未来的开发应用趋势进行了展望。

Iron oxychloride(FeOCl) is a typical iron-based material with layered structure. It was discovered in the 1930s, and since the 1970s, has been extensively studied as a unique host in the field of supramolecular intercalation chemistry. The modification of FeOCl is much more flexible and easier than traditional iron(hydr)oxides due to the layered structure. In 2013, our group reported that FeOCl has excellent Fenton-like activity, which shows the promising potentialities for practical applications. Inspired by the properties of FeOCl and encouraged by our result, FeOCl and its intercalation compounds have recently attracted significant attention in catalysis and energy storage. In this review, the characteristics of pristine FeOCl and its intercalation compounds are summarized, especially intercalation-induced crystal and electronic structure changes. And then we focus on the contributions made by these materials toward advanced oxidation processes(AOPs), selective oxidation, electrode materials and other fields. Finally, challenges and future perspectives are reviewed in terms of structural design and the improvement of stability.

Contents

1 Introduction

2 The preparation and structure of FeOCl

2.1 Preparation

2.2 Structure

3 Intercalation behavior

3.1 Intercalation mechanism

3.2 Intercalation-induced structural evolution

3.3 FeOCl intercalation compounds

4 Applications

4.1 Fenton-like catalysts

4.2 Other AOP catalysts

4.3 Selective oxidation catalysts

4.4 Organic synthesis catalysts

4.5 Electrode materials

4.6 Other applications

5 Conclusion and outlook

()
图1 自1970年以来FeOCl的研究论文发表数(a)和自2013年以来FeOCl应用性研究的论文发表数(b)(基于Scifinder和Web of Science检索结果,2020年数据截止至3月)
Fig. 1 The number of papers about FeOCl since 1970(a) and the number of papers dealing with the application of FeOCl since 2013(b)(The results are based on Scifinder and Web of Science, data as of March 2020)
图2 FeOCl晶体结构(a~c)和Fe配位结构(d)示意图[22]、SEM(e)和TEM像(f)[9]
Fig. 2 The crystal structure(a~c), octahedral geometry of [FeO4Cl2] sites(d)[22], SEM image(e) and TEM image(f) of FeOCl[9]
图3 客体物种在FeOCl层间的结构(a)(基于中子衍射数据)[36]和插层化合物的穆谱表征(b)[32]
Fig. 3 The structure of guest between the interlayer of FeOCl(a)(from neutron diffraction)[36] and M?ssbauer spectrum of intercalation compound(b)[32]
图4 不同晶体学方向上PANI链在FeOCl层间的结构[41]
Fig. 4 Proposed arrangement of PANI chains in the galleries of FeOCl viewed from two different directions[41]
图5 FeOCl的插层机理及典型的插层体系
Fig. 5 The intercalation mechanism of guests in FeOCl matrix and the typical FeOCl intercalation compounds
表1 FeOCl和其他Fe基材料HO·生成速率比较[9]
Table 1 Comparison of HO· formation rates for FeOCl and other iron-based materials[9]
图6 FeOCl纳米片Fe(Ⅱ)-Fe(Ⅲ)转化激活H2O2示意图[60]
Fig. 6 Turnover of Fe(Ⅱ)-Fe(Ⅲ) in FeOCl nanosheets upon reaction with H2O2[60]
图7 FeOCl/CDots体系光Fenton降解4-CP机理示意图[73]
Fig. 7 Schematic mechanism of photocatalytic-Fenton degradation of 4-CP with FeOCl/CDots[73]
图8 FeOCl-PANI体系在不同pH下污染物去除机理示意图[74]
Fig. 8 Schematic diagram of reaction mechanism of FeOCl-PANI system for pollutant removal at different pH[74]
图9 FeOCl/MoS2复合材料的结构(a)及其膜过滤连续流动降解装置图(b)[78]
Fig. 9 The structure of FeOCl/MoS2(a) and configuration of flow-through degradation experiment(b)[78]
图10 FeOCl纳米颗粒的TEM像(a)及其催化苯羟基化机理图(b)[10]
Fig. 10 SEM image of FeOCl nanoparticle(a) and catalytic benzene hydroxylation mechanism(b)[10]
图11 FeOCl用于CIB的充放电曲线(10 mA·g-1)(a)、循环伏安测试图(1到10循环, 60 mVs·g-1)(b)、FeOCl/Li体系的循环放电性能(c)和FeOCl电极的XRD图样(d)[11]
Fig. 11 Discharge and charge curves(10 mA·g-1)(a), CV patterns(1st to 10th cycles, 60 mVs·g-1)(b), cycling performance of the FeOCl/Li system(c) and XRD patterns of the FeOCl electrode(d)[11]
图12 FeOCl/CDCA电极的电化学性能:电流密度为2~50 mA·cm-2下的恒电流充放电(GCD)曲线(a);倍率性能(b)50 mA·cm-2下的Nyquist点图(内图是高频区域放大像)(c);EIS数据拟合的等效电路(d)和FeOCl/CDCA组分在电化学反应中的功能示意图(e)[12]
Fig. 12 Electrochemical properties of the FeOCl/CDCA electrode: GCD curves of FeOCl/CDCA at current densities of 2~50 mA·cm-2(a); rate performance(b); Nyquist plots of FeOCl@CDCA at 50 mA·cm-2 and insets show the enlarged image at the high-frequency region(c), the equivalent circuit used for EIS data fitting(d); schematic diagrams of functions of CDCA and FeOCl components on the electrochemical reactions(e)[12]
图13 FeOCl纳米片的AFM像(a)和厚度变化(b);块体FeOCl(c)和FeOCl纳米片(d)的磁化率随温度变化曲线[98]
Fig. 13 AFM image of FeOCl nanosheet(a) and extracted nanosheet thickness profile(b); temperature-dependent magnetic susceptibility of bulk FeOCl(c) and FeOCl nanosheet(d)[98]
图14 FeOCl NSAs的CVD合成和退火转化为α-Fe2O3 NSAs的示意图(a)和SEM(b,c)、TEM(d,e)像[13]
Fig. 14 Schematic illustration of FeOCl NSAs synthesized by a CVD method as well as a subsequent annealing treatment(a), SEM(b,c) images and TEM(d,e) images of FeOCl and α-Fe 2O3 NSAs[13]
[1]
Stark M S, Kuntz K L, Martens S J, Warren S C. Adv. Mater., 2019, 31:1808213.
[2]
Lingli Z, Ruigang X, Linjiang W. Progress in Chemistry, 2019, 31:275.
周伶俐, 谢瑞刚, 王林江. 化学进展, 2019, 31:275.
[3]
Zeng T, You Y, Wang X, Tai G, Hu T. Progress in Chemistry, 2016, 28:459.
曾甜, 尤运城, 王旭峰, 胡廷松, 台国安. 化学进展, 2016, 28:459.
[4]
Wang D Y, Luo F, Lu M, Xie X J, Huang L, Huang W. Small, 2019, 15:1804404.
[5]
Ötvös S B, PálinkÓ I, Fülöp F. Catal. Sci. Technol., 2019, 9:47.
[6]
Schäfer H. Z. Anorg. Chem., 1949, 260:279.
[7]
Whittingham M S, Jacobson A J, Editors. Intercalation Chemistry. New York: Academic Press, 1982.
[8]
Whittingham M S. US4049887A, 1977.
[9]
Yang X J, Xu X M, Xu J, Han Y F. J. Am. Chem. Soc., 2013, 135:16058.
[10]
ElMetwally A E, Eshaq G, Yehia F Z, Al-Sabagh A M, Kegnæs S. ACS Catal., 2018, 8:10668.
[11]
Zhao X Y, Zhao-Karger Z, Wang D, Fichtner M. Angew. Chem. Int. Ed., 2013, 52:13621.
[12]
Wan C C, Jiao Y, Bao W H, Gao H, Wu Y Q, Li J. J. Mater. Chem. A, 2019, 7:9556.
[13]
Wang C W, Yang S, Jiang H B, Yang H G. Chem. Eur. J., 2015, 21:18024.
[14]
Wang X, Ma Y C, Sheng X, Wang Y C, Xu H X. Nano Lett., 2018, 18:2217.

URL     pmid: 29528661
[15]
North N A, Pearson C. Stud. Conserv., 1977, 22:146.
[16]
Dehnicke K. Angew. Chem., 1965, 77:22.
[17]
Zhang J, Jiao X L, Xia Y G, Liu F F, Pang Y P, Zhao X F, Chen D R. Chem. Eur. J., 2016, 22:9321.
[18]
Yang X J. Doctoral Dissertation of East China University of Science and Technology, 2014.
( 杨雪晶. 华东理工大学博士论文, 2014.).
[19]
Goldsztaub S. Bull. De La SociÉtÉ Française De MinÉralogie, 1935, 58:6.
[20]
Grant R W, Wiedersich H, Housley R M, Espinosa G P, Artman J O. Phys. Rev. B, 1971, 3:678.
[21]
Sengupta D, Artman J O, Sawatzky G A. Phys. Rev. B, 1971, 4:1484.
[22]
Lind M D. Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem., 1970, 26:1058.
[23]
Pieczko M E, Breen J J. Langmuir, 1995, 11:1412.
[24]
Kostiner E, Steger J. J. Solid State Chem., 1971, 3:273.
[25]
Dai Y D, Yu Z, He Y, Huang H B, Shao T, Lin J, Musa Ali A, Jiang Z Y, Hsia Y F. Chem. Phys. Lett., 2002, 358:473.
[26]
Herber R H, Maeda Y. Phys. B+C, 1980, 99:352.
[27]
Grant R W. J. Appl. Phys., 1971, 42:1619.
[28]
Herber R H. Acc. Chem. Res., 1982, 15:216.
[29]
Eckert H, Herber R H. J. Chem. Phys., 1984, 80:4526.
[30]
Herber R H, Rein A J. J. Chem. Phys., 1980, 73:6345.
[31]
Jarrige I, Cai Y Q, Shieh S R, Ishii H, Hiraoka N, Karna S, Li W H. Phys. Rev. B, 2010, 82:165121.
[32]
Herber R H, Eckert H. Phys. Rev. B, 1985, 31:34.
[33]
Kim S H, Kim H. Bull. Korean Chem. Soc., 1993, 14:132.
[34]
Gamble F R, Silbernagel B G. J. Chem. Phys., 1975, 63:2544.
[35]
Riekel C, Hohlwein D, Schöllhorn R. J. Chem. Soc. Chem. Commun., 1976:863.
[36]
Kauzlarich S M, Stanton J L, Faber J, Averill B A. J. Am. Chem. Soc., 1986, 108:7946.
[37]
Sagua A, Morán E, Alario-Franco M A, Rivera A, LeÓn C, Santamaría J, Sanz J. Int. J. Inorg. Mater., 2001, 3:293.
[38]
Kauzlarich S M, Averill B A, Teo B K. Mol. Cryst. Liq. Cryst., 1984, 107:65.
[39]
Choy J H, Yoon J B, Kim D K, Hwang S H. Inorg. Chem., 1995, 34:6524.
[40]
Maeda Y, Yamashita M, Ohshio H, Tsutsumi N, Takashima Y. Bull. Chem. Soc. Jpn., 1982, 55:3138.
[41]
Wu C G, DeGroot D C, Marcy H O, Schindler J L, Kannewurf C R, Bakas T, Papaefthymiou V, Hirpo W, Yesinowski J P. J. Am. Chem. Soc., 1995, 117:9229.
[42]
Prassides K, Bell C J, JosÉDianoux A, Wu C G, Kanatzidis M G. Phys. B: Condens. Matter, 1992, 180/181:668.
[43]
Hwang S R, Li W H, Lee K C, Lynn J W, Wu C G. Phys. Rev. B, 2000, 62:14157.
[44]
Sakaebe H, Higuchi S, Kanamura K, Fujimoto H, Takehara Z I. J. Power Sources, 1995, 56:165.
[45]
Dai Y D, Zhong Y B, Han W, Wu Y J, Chang S Q. Journal of Nanjing University of Aeronautics & Astronautics, 2005, 37:643.
戴耀东, 钟义兵, 韩薇, 伍亚军, 常树全. 南京航空航天大学学报, 2005, 37:643.
[46]
Ōya A, Yamada K, Ōtani S. J. Mater. Sci., 1982, 17:3617.
[47]
Kanamaru F, Yamanaka S, Koizumi M, Nagai S. Chem. Lett., 1974, 3:373.
[48]
Herber R H, Maeda Y. Inorg. Chem., 1981, 20:1409.
[49]
Schäfer-Stahl H, Abele R. Angew. Chem., 1980, 92:493.
[50]
Halbert T R, Scanlon J. Mater. Res. Bull., 1979, 14:415.
[51]
Palvadeau P, Coīc L, Rouxel J, MÉnil F, Fournès L. Mater. Res. Bull., 1981, 16:1055.
[52]
Siu G G, Bai Z P, Yu Z, Fang N, Shi F N, Liu R C, You X Z. Mater. Chem. Phys., 1999, 59:168.
[53]
Maguire J A, Banewicz J J. Mater. Res. Bull., 1984, 19:1573.
[54]
Banewicz J J, Maguire J A. Mater. Res. Bull., 1986, 21:93.
[55]
Kikkawa S, Kanamaru F, Koizumi M. Inorg. Chem., 1976, 15:2195.
[56]
Kikkawa S, Kanamaru F, Koizumi M. Inorg. Chem., 1980, 19:259.
[57]
Kauzlarich S M, Ellena J F, Stupik P D, Rieff W M, Averill B A. J. Am. Chem. Soc., 1987, 109:4561.
[58]
Bringley J F, Averill B A. Chem. Mater., 1990, 2:180.
[59]
Bringley J F, Averill B A. J. Chem. Soc. Chem. Commun., 1987,399.
[60]
Sun M, Chu C H, Geng F L, Lu X L, Qu J H, Crittenden J, Elimelech M, Kim J H. Environ. Sci. Technol. Lett., 2018, 5:186.
[61]
Ji X X, Wang H F, Hu P J. Rare Met., 2019, 38:783.
[62]
ElShafei G M S, Al-Sabagh A M, Yehia F Z, Philip C A, Moussa N A, Eshaq G, ElMetwally A E. Appl. Catal. B: Environ., 2018, 224:681.
[63]
ElMetwally A E, Eshaq G, Al-Sabagh A M, Yehia F Z, Philip C A, Moussa N A, ElShafei G M S. Sep. Purif. Technol., 2019, 210:452.
[64]
Li M, Wang Y G, Chen Y H, Zhang S M. Photochem. Photobiol. Sci., 2014, 13:1025.

doi: 10.1039/c4pp00076e     URL     pmid: 24770347
[65]
Zhang J, Liu G D, Wang P H, Liu S J. New J. Chem., 2017, 41:10339.
[66]
Shi X H, Cui C, Zhang L, Zhang J, Liu G D. New J. Chem., 2019, 43:16273.
[67]
Jiang L L, Zhang L, Cui C, Zhang J, Liu G D, Song J J. Mater. Lett., 2019, 240:30.
[68]
Zhang J, Yang M X, Lian Y, Zhong M L, Sha J Q, Liu G D, Zhao X F, Liu S J. Dalton Trans., 2019, 48:3476.

URL     pmid: 30801080
[69]
Zhang J, Liu G D, Liu S J. New J. Chem., 2018, 42:6896.
[70]
Zhang J, Zhao X F, Zhong M L, Yang M X, Lian Y, Liu G D, Liu S J. Eur. J. Inorg. Chem., 2018, 2018:3080.
[71]
Zhang J, Zhan M Y, Zheng L L, Zhang C, Liu G D, Sha J Q, Liu S J, Tian S. Inorg. Chem., 2019, 58:250.
[72]
Ma Y H, Xie J, Zhang R, Hu C C, Zhao J Q. Photochem. Photobiol. Sci., 2008, 7:263.

doi: 10.1039/b714837b     URL     pmid: 18264596
[73]
Zhang J, Zhang G, Ji Q H, Lan H C, Qu J H, Liu H J. Appl. Catal. B: Environ., 2020, 266:118665.
[74]
Wang J L, Tsai M C, Lu Z Y, Li Y, Huang G T, Wang H L, Liu H L, Liao X Y, Hwang B J, Neumann A, Yang X J. ACS Omega, 2019, 4:21945.
[75]
Yang X J, Tian P F, Zhang X M, Yu X, Wu T, Xu J, Han Y F. AIChE J., 2015, 61:166.
[76]
Yang X J, Xu X M, Xu X C, Xu J, Wang H L, Semiat R, Han Y F. Catal. Today, 2016, 276:85.
[77]
Sun M, Zucker I, Davenport D M, Zhou X C, Qu J H, Elimelech M. Environ. Sci. Technol., 2018, 52:8674.
[78]
Qu S Y, Wang W H, Pan X Y, Li C L. J. Hazard. Mater., 2020, 384:121494.

URL     pmid: 31679890
[79]
Li Z Z, Shen C S, Liu Y B, Ma C Y, Li F, Yang B, Huang M H, Wang Z W, Dong L M, Wolfgang S. Appl. Catal. B-Environ., 2020, 260:10.
[80]
Liu Y B, Zhang J, Liu F Q, Shen C S, Li F, Huang M H, Yang B, Wang Z W, Sand W. Chemosphere, 2020, 245:125604.

URL     pmid: 31855755
[81]
Chen M D, Xu H M, Wang Q, Li D Y, Xia D S. Chem. Phys. Lett., 2018, 706:415.
[82]
Chen M D, Xu H M, Zhang X F, Li D Y, Xia D S. J. Mater. Res., 2018, 33:3549.
[83]
Chen Y Q, Liu Y P, Zhang L, Xie P C, Wang Z P, Zhou A J, Fang Z, Ma J. J. Hazard. Mater., 2018, 353:18.
[84]
Qu S Y, Li C L, Sun X, Wang J W, Luo H J, Wang S, Ta J Y, Li D Y. Sep. Purif. Technol., 2019, 224:132.
[85]
Dumbre D, Amin M H, Loh Q, Choudahry V R, Selvakannan P R, Bhargava S K. RSC Adv., 2016, 6:69334.
[86]
Mohammadi H, Karami C, Bahri M, Gilany M M, Taher M A. Inorg. Nano Met. Chem., 2017, 47:1334.
[87]
Kanamura K, Imanishi N, Fujiwara M, Takehara Z I. J. Power Sources, 1989, 26:467.
[88]
Kanamura K, Sakaebe H, Fujimoto H, Takehara Z I. J. Electrochem. Soc., 1995, 142:2126.
[89]
Zhao X Y, Ren S H, Bruns M, Fichtner M. J. Power Sources, 2014, 245:706.
[90]
Chen C, Yu T T, Yang M, Zhao X Y, Shen X D. Adv. Sci., 2019, 6:1802130.
[91]
Zhao X Y, Li Q, Yu T T, Yang M, Fink K, Shen X D. Sci. Rep., 2016, 6:19448.

URL     pmid: 26777572
[92]
Yu T T, Li Q, Zhao X Y, Xia H, Ma L Q, Wang J L, Meng Y S, Shen X D. ACS Energy Lett., 2017, 2:2341.
[93]
Yang R J, Yu T T, Zhao X Y. J. Alloy. Compd., 2019, 788:407.
[94]
Yu T T, Yang R J, Zhao X Y, Shen X D. ChemElectroChem, 2019, 6:1761.
[95]
Luo J M, Sun M, Ritt C L, Liu X, Pei Y, Crittenden J C, Elimelech M. Environ. Sci. Technol., 2019, 53:2075.
[96]
Wang Y Y, Zhang H W, Zhu Y D, Dai Z F, Bao H M, Wei Y, Cai W P. Adv. Mater. Interfaces, 2016, 3:1500801.
[97]
Yan Z J, Chrisey D B. J. Photochem. Photobiol. C: Photochem. Rev., 2012, 13:204.
[98]
Ferrenti A M, Klemenz S, Lei S M, Song X Y, Ganter P, Lotsch B V, Schoop L M. Inorg. Chem., 2020, 59:1176.

URL     pmid: 31880436
[99]
Wei X, Su J, Li X H, Chen J S. Dalton Trans., 2014, 43:16173.

URL     pmid: 25251637
[100]
Frydrych J, Machala L, Hermanek M, Medrik I, Mashlan M, Tucek J, Pechousek J, Sharma V K. Thin Solid Films, 2010, 518:5916.
[101]
Marinović-Cincović M, Wang G, Fedoroff M, Šaponjić Z V, Milonjić S K, Nedeljković J M. Mater. Sci. Forum, 2006, 518:63.
[102]
Notestein J M, Katz A. Chem. Eur. J., 2006, 12:3954.
[103]
Rao C R, Cheetham A K, Thirumurugan A. J. Phys.: Condens. Matter, 2008, 20:159801.
[1] 张晓菲, 李燊昊, 汪震, 闫健, 刘家琴, 吴玉程. 第一性原理计算应用于锂硫电池研究的评述[J]. 化学进展, 2023, 35(3): 375-389.
[2] 黄祺, 邢震宇. 锂硒电池研究进展[J]. 化学进展, 2022, 34(11): 2517-2539.
[3] 刘小琳, 杨西亚, 王海龙, 王康, 姜建壮. 用于可充电器件的有机电极材料[J]. 化学进展, 2021, 33(5): 818-837.
[4] 张长欢, 李念武, 张秀芹. 柔性锂离子电池的电极[J]. 化学进展, 2021, 33(4): 633-648.
[5] 张一, 张萌, 佟一凡, 崔海霞, 胡攀登, 黄苇苇. 多羰基共价有机骨架在二次电池中的应用[J]. 化学进展, 2021, 33(11): 2024-2032.
[6] 吴贤文, 龙凤妮, 向延鸿, 蒋剑波, 伍建华, 熊利芝, 张桥保. 中性或弱酸性体系下锌基水系电池负极材料研究进展[J]. 化学进展, 2021, 33(11): 1983-2001.
[7] 章胜男, 韩东梅, 任山, 肖敏, 王拴紧, 孟跃中. 有机电极材料固定化策略[J]. 化学进展, 2020, 32(1): 103-118.
[8] 乔少明, 黄乃宝, 高正远, 周仕贤, 孙银. 超级电容器用镍锰基二元金属氧化物电极材料[J]. 化学进展, 2019, 31(8): 1177-1186.
[9] 赵云, 金玉红, 王莉, 田光宇, 何向明. 自组装多级结构在锂离子电池中的应用[J]. 化学进展, 2018, 30(11): 1761-1769.
[10] 李敏, 王艳丽, 吴晓燕, 段磊, 张春明, 何丹农. 锂离子电池富锂材料中离子掺杂、表面包覆、表面氧空位修饰的作用机理及其联合机制[J]. 化学进展, 2017, 29(12): 1526-1536.
[11] 朱永明, 姜云鹏, 胡会利*. 纳米NCS在电化学能量转换和储存中的制备和应用[J]. 化学进展, 2017, 29(11): 1422-1434.
[12] 史菁菁, 郭星, 陈人杰, 吴锋. 柔性电池的最新研究进展[J]. 化学进展, 2016, 28(4): 577-588.
[13] 夏文, 李政, 徐银莉, 庄旭品, 贾士儒, 张健飞. 超级电容器用细菌纤维素基电极材料[J]. 化学进展, 2016, 28(11): 1682-1688.
[14] 庄树新, 吕建先, 路密, 刘翼民, 陈晓彬. 钙钛矿型氧化物的制备及其在固体氧化物燃料电池和金属-空气电池中的应用[J]. 化学进展, 2015, 27(4): 436-447.
[15] 金翼, 孙信, 余彦, 丁楚雄, 陈春华, 官亦标. 钠离子储能电池关键材料[J]. 化学进展, 2014, 26(04): 582-591.