English
新闻公告
More
化学进展 2020, Vol. 32 Issue (12): 2013-2021 DOI: 10.7536/PC200332 前一篇   后一篇

• 综述 •

微生物燃料电池阴极脱氮

张瑞1,2, 吴云1,2,**(), 王鲁天1,2, 吴强1,2, 张宏伟1,2   

  1. 1 天津工业大学 省部共建分离膜与膜过程国家重点实验室 天津 300387
    2 天津工业大学 环境科学与工程学院 天津 300387
  • 收稿日期:2020-03-20 修回日期:2020-04-30 出版日期:2021-10-15 发布日期:2020-09-17
  • 通讯作者: 吴云
  • 作者简介:
    ** Corresponding author e-mail:
  • 基金资助:
    国家自然科学基金重点项目(No.51678410); 国家自然科学基金项目(No.51878448); 天津市教委重点基金项目(No.2019ZD06)

Cathode Denitrification of Microbial Fuel Cells

Rui Zhang1,2, Yun Wu1,2,**(), Lutian Wang1,2, Qiang Wu1,2, Hongwei Zhang1,2   

  1. 1 State Key Laboratory of Separation Membrane and Membrane Processes, TianGong University, Tianjin 300387, China
    2 School of Environmental Science and Engineering, TianGong University, Tianjin 300387, China
  • Received:2020-03-20 Revised:2020-04-30 Online:2021-10-15 Published:2020-09-17
  • Contact: Yun Wu
  • Supported by:
    the Key Program of National Natural Science Foundation of China(No.51678410); the National Natural Science Foundation of China(No.51878448); and the Key Foundation of Tianjin Education Committee(No.2019ZD06)

微生物燃料电池(MFC)阴极电子受体的多样性可实现其阴极脱氮,从而将产生的电能合理利用,因此阴极脱氮成为了MFC的一个研究方向,同时也为实际废水中氮素的去除提供了新的可能。然而在反应过程中有众多因素会导致NOx-N与其他电子受体竞争阳极电子的现象,影响阴极反硝化过程对于电子的利用率,从而造成脱氮效率低等现实问题。目前已有许多研究通过优化MFC自身结构弥补产电的缺陷,及将与其他工艺系统耦合实现同步硝化反硝化等方法,取长补短以增加脱氮效率,降低对碳源的需求,以此解决微生物燃料电池阴极脱氮出现的问题。本文从MFC不同的脱氮历程、MFC工艺条件(pH、C/N、DO)、极室分隔材料等影响MFC阴极脱氮的因素及影响其阴极反硝化微生物群落构成等方面,进行了综述并预测未来研究方向。

The diversity of cathode electron acceptor of microbial fuel cell(MFC) can realize its cathode denitrification, so as to make rational use of the generated electric energy. Therefore, cathode denitrification has become a research direction of MFC, and also provides a new possibility for the removal of nitrogen from actual wastewater. However, there are many factors in the reaction process that will cause NOx-N to compete with other electron acceptors for anode electrons, which affects the utilization of electrons in the cathode denitrification process, resulting in practical problems such as low nitrogen removal efficiency. At present, research has been conducted to make up for the defects of electricity generation by optimizing the structure of MFC and coupling it with other process systems to realize simultaneous nitrification and denitrification, so as to increase the denitrification efficiency and reduce the demand for carbon source, so as to solve the problem of microbial fuel cell cathode denitrification. In this paper, the research progress at home and abroad is reviewed and the future research direction is predicted from the aspects of different denitrification processes of MFC, the factors affecting MFC cathode denitrification, such as MFC process conditions(pH, C/N, DO), polar chamber separation materials, and the composition of cathode denitrification microbial community.

Contents

1 Introduction

2 The forms of MFC denitrification processes

2.1 Different denitrification processes

2.2 Coupling Techniques of MFC

3 The main factors affecting MFC cathode denitrification

3.1 Operating parameters

3.2 Polar compartment separation materials

4 The effect of microbial population on MFC cathode denitrification

5 Outlook

()
表1 几种不同分隔材料的优缺点
Table 1 The advantages and disadvantages of several different separation materials
[1]
Li N , Wan Y , Wang X . Science of the Total Environment, 2020, 706: 135690.
[2]
Wan Y , Huang Z , Zhou L , Li T , Liao C , Yan X , Li N , Wang X . Environmental Science & Technology, 2020, 54: 3002.
[3]
Park D H , Laivenieks M , Guettler M V , Jain M K , Zeikus J G . Applied And Environmental Microbiology, 1999, 65: 2912.
[4]
Roy D , Rahni M , Pierre P , Yargeau V . Chemical Engineering Journal, 2016, 287: 277.
[5]
Oon Y S , Ong S A , Ho L N , Wong Y S , Oon Y L , Lehl H K , Thung W E . International Journal of Environmental Science and Technology, 2017, 14: 2435.
[6]
Oon Y S , Ong S A , Ho L N , Wong Y S , Oon Y L , Lehl H K , Thung W E . Bioprocess and Biosystems Engineering, 2016, 39: 893.
[7]
Gregory K B , Bond D R , Lovley D R . Environmental Microbiology, 2004, 6: 596.
[8]
Park H I , Kim D K , Choi Y J , Pak D . Process Biochemistry, 2005, 40: 3383.
[9]
Clauwaert P , Rabaey K , Aelterman P , De Schamphelaire L, Ham T H , Boeckx P , Boon N , Verstraete W . Environmental Science & Technology, 2007, 41: 3354.
[10]
Jia Y H , Tran H T , Kim D H , Oh S J , Park D H , Zhang R H , Ahn D H . Bioprocess and Biosystems Engineering, 2008, 31: 315.
[11]
Virdis B , Rabaey K , Yuan Z , Keller J . Water Research, 2008, 42: 3013.
[12]
Zhang G , Zhang H , Zhang C , Zhang G , Yang F , Yuan G , Gao F . Process Biochemistry, 2013, 48: 893.
[13]
Kelly P T , He Z . Bioresource Technology, 2014, 153: 351.
[14]
Zhang J , Zheng P , Zhang M , Chen H , Chen T , Xie Z , Cai J , Abbas G . Bioresource Technology, 2013, 149: 44.
[15]
Puig S , Serra M , Vilar-Sanz A , Cabre M , Baneras L , Colprim J , Dolors Balaguer M. Bioresource Technology, 2011, 102: 4462.
[16]
Li W , Zhang S , Chen G , Hua Y . Applied Energy, 2014, 126: 136.
[17]
Virdis B , Rabaey K , Rozendal R A , Yuan Z , Keller J . Water Research, 2010, 44: 2970.
[18]
Yan H , Saito T , Regan J M . Water Research, 2012, 46: 2215.
[19]
Zhu G , Chen G , Yu R , Li H , Wang C . Process Biochemistry, 2016, 51: 80.
[20]
Li H , Zuo W , Tian Y , Zhang J , Di S , Li L , Su X . Environmental Science and Pollution Research, 2017, 24: 5106.
[21]
Voets J P , Vanstaen H , Verstraete W . Journal of the Water Pollution Control Federation, 1975, 47: 394.
[22]
Sutherson S , Ganczarczyk J J . Water Pollution Research Journal of Canada, 1986, 21: 257.
[23]
Hellinga C , Schellen A , Mulder J W , Van Loosdrecht M C M, Heijnen J J . Water Science and Technology, 1998, 37: 135.
[24]
Peng Y , Zhu G . Applied Microbiology and Biotechnology, 2006, 73: 15.
[25]
Ilies P , Mavinic D S . Water Research, 2001, 35: 2065.
[26]
Yang S , Guo W , Chen Y , Zhou X , Zheng H , Feng X , Yin R , Ren N . RSC Advances, 2014, 4: 52892.
[27]
Li Y , Williams I , Xu Z , Li B , Li B . Applied Energy, 2016, 163: 352.
[28]
Jiang H M. Environmental Engineering Science, 2017, 34: 489.
[29]
Yang Z , Pei H , Hou Q , Jiang L , Zhang L , Nie C . Chemical Engineering Journal, 2018, 332: 277.
[30]
Wang Y , Lin Z , Su X , Zhao P , Zhou J , He Q , Ai H . Chemical Engineering Journal, 2019, 372: 956.
[31]
Xu P , Xiao E , Wu J , He F , Zhang Y , Wu Z . Journal Of Environmental Sciences, 2019, 78: 338.
[32]
Sun J , Li N , Yang P , Zhang Y P , Yuan Y , Lu X W , Zhang H G . International Journal Of Hydrogen Energy, 2020, 45: 10871.
[33]
He Z , Kan J , Wang Y , Huang Y , Mansfeld F , Nealson K H . Environmental Science & Technology, 2009, 43: 3391.
[34]
Zhang F , He Z . Journal of Chemical Technology and Biotechnology, 2012, 87: 153.
[35]
Zhang F , He Z . Process Biochemistry, 2012, 47: 2146.
[36]
Sayess R R , Saikaly P E , El-Fadel M , Li D , Semerjian L . Water Research, 2013, 47: 881.
[37]
Wu Y , Yang Q , Zeng Q , Ngo H H , Guo W , Zhang H . Chemical Engineering Journal, 2017, 316: 315.
[38]
Vijay A , Vaishnava M , Chhabra M . Environmental Science and Pollution Research, 2016, 23: 7744.
[39]
张吉强( Zhang J Q ). 浙江大学博士论文(Doctoral Dissertation of Zhejiang University), 2014.
[40]
徐功娣( Xu G D ), 李永峰( Li Y F ), 张永娟( Zhang Y J ). 微生物燃料电池原理与应用(Principle and Application of Microbial Fuel Cell). 哈尔滨:哈尔滨工业大学出版社(Harbin: Harbin Institute of Technology Press), 2012.
[41]
Rozendal R A , Hamelers H V M , Buisman C J N . Environmental Science & Technology, 2006, 40: 5206.
[42]
Cheng K Y , Ginige M P , Kaksonen A H . Environmental Science & Technology, 2012, 46: 10372.
[43]
Xia S , Li J , Wang R . Ecological Engineering, 2008, 32: 256.
[44]
Chen Y , Luo J , Yan Y , Feng L . Applied Energy, 2013, 102: 1197.
[45]
Li M , Wu H , Zhang J , Ngo H H , Guo W , Kong Q . Bioresource Technology, 2017, 240: 157.
[46]
Huang B , Feng H , Wang M , Li N , Cong Y , Shen D . Bioresource Technology, 2013, 132: 91.
[47]
Zhou M , Fu W , Gu H , Lei L . Electrochimica Acta, 2007, 52: 6052.
[48]
Virdis B , Read S T , Rabaey K , Rozendal R A , Yuan Z , Keller J . Bioresource Technology, 2011, 102: 334.
[49]
Virdis B , Rabaey K , Yuan Z , Rozendal R A , Keller J . Environmental Science & Technology, 2009, 43: 5144.
[50]
Chiu Y C , Lee L L , Chang C N , Chao A C . International Biodeterioration & Biodegradation, 2007, 59: 1.
[51]
Yu C P , Liang Z , Das A , Hu Z . Water Research, 2011, 45: 1157.
[52]
Zhang Y , Angelidaki I . Water Research, 2012, 46: 6445.
[53]
Third K A , Burnett N , Cord-Ruwisch R . Biotechnology and Bioengineering, 2003, 83: 706.
[54]
Zhang X , Zhu F , Chen L , Zhao Q , Tao G . Bioresource Technology, 2013, 146: 161.
[55]
Zhang X , Cheng S , Wang X , Huang X , Logan B E . Environmental Science & Technology, 2009, 43: 8456.
[56]
Watson V J , Saito T , Hickner M A , Logan B E . Journal of Power Sources, 2011, 196: 3009.
[57]
侯胜伟( Hou S W ). 哈尔滨工业大学硕士论文(Master Dissertation of Harbin Institute of Technology), 2011.
[58]
Walter X A , Merino-Jimenez I , Greenman J , Ieropoulos I . Journal of Power Sources, 2018, 392: 150.
[59]
Zhou Y , Zhao S , Yin L , Zhang J , Bao Y , Shi H . Electroanalysis, 2018, 30: 2145.
[60]
Yan Y , Wang X . Science China-Technological Sciences, 2019, 62: 1657.
[61]
Park H I , Kim J S , Kim D K , Choi Y J , Pak D . Enzyme and Microbial Technology, 2006, 39: 453.
[62]
Yu Y , Zhao J , Wang S , Zhao H , Ding X , Gao K . Environmental Technology, 2017, 38: 3093.
[63]
章静( Zhang J ), 赵丝蒙( Zhao S M ), 周昱宏( Zhou Y H ), 史惠祥( Shi H X ). 浙江大学学报(理学版)(Journal of Zhejang University, Science Edition), 2019, 46: 589.
[64]
王清萍( Wang Q P ), 刘培文( Liu P W ), 翁秀兰( Weng X L ), 陈祖亮( Chen Z L ). 环境工程学报( Chinese Journal of Environmental Science), 2014, 8: 3277.
[65]
侯连刚( Hou L G ). 齐鲁工业大学硕士论文(Master Dissertation of Qilu University of Technology), 2016.
[66]
Vijay A , Chhabra M , Vincent T . Bioresource Technology, 2019, 272: 217.
[67]
Seo Y , Kang H , Chang S , Lee Y Y , Cho K S . Journal of Environmental Science And Health Part a-Toxic/Hazardous Substances & Environmental Engineering, 2018, 53: 13.
[68]
钱子牛( Qian Z N ), 杨立格( Yang L G ), 谢倍珍( Xie B Z ), 刘贺清( Liu H Q ), 刘红( Liu H ). 环境工程学报( Chinese Journal of Environmental Science), 2019, 13: 1986.
[1] 常定明, 张海芹, 卢智昊, 黄光团, 蔡兰坤, 张乐华. 金属离子在微生物燃料电池中的行为[J]. 化学进展, 2014, 26(07): 1244-1254.
[2] 肖勇, 吴松, 杨朝晖, 郑越, 赵峰. 电化学活性微生物的分离与鉴定[J]. 化学进展, 2013, 25(10): 1771-1780.
[3] 牛韬, 胡明. 微生物群结构、人类健康和癌症化学预防[J]. 化学进展, 2013, 25(09): 1601-1612.
[4] 陈立香, 肖勇, 赵峰. 微生物燃料电池生物阴极[J]. 化学进展, 2012, 24(01): 157-162.
[5] 郭坤 张京京 李浩然 杜竹玮. 微生物电解电池制氢*[J]. 化学进展, 2010, 22(04): 748-753.
[6] 刘宏芳,郑碧娟. 微生物燃料电池[J]. 化学进展, 2009, 21(6): 1349-1355.
[7] 毛艳萍,蔡兰坤,张乐华,侯海萍,黄光团,刘勇弟. 生物阴极微生物燃料电池*[J]. 化学进展, 2009, 21(0708): 1672-1677.
[8] 卢娜,周顺桂,倪晋仁. 微生物燃料电池的产电机制*[J]. 化学进展, 2008, 20(0708): 1233-1240.
[9] 关毅,张鑫. 微生物燃料电池*[J]. 化学进展, 2007, 19(01): 74-79.
阅读次数
全文


摘要

微生物燃料电池阴极脱氮