English
新闻公告
More
化学进展 2020, Vol. 32 Issue (12): 1952-1977 DOI: 10.7536/PC200319 前一篇   后一篇

• 综述 •

新型析氢析氧电化学催化剂在固体聚合物水电解体系的应用

康伟1, 李璐1, 赵卿2,**(), 王诚2,3,**(), 王建龙2,3, 滕越1   

  1. 1 全球能源互联网研究院有限公司 北京 102209
    2 清华大学核能与新能源研究院 北京 100084
    3 清华大学-潍柴动力智能制造联合研究院 北京 100084
  • 收稿日期:2020-03-20 修回日期:2020-05-27 出版日期:2021-10-20 发布日期:2020-10-20
  • 通讯作者: 赵卿, 王诚
  • 作者简介:
    ** Corresponding author e-mail: (Cheng Wang); (Qing Zhao)
  • 基金资助:
    国家电网有限公司总部科技项目(No. 5419-201920213A-0-0-00)

Application of New Hydrogen and Oxygen Evolution Electrochemical Catalysts for Solid Polymer Water Electrolysis System

Wei Kang1, Lu Li1, Qing Zhao2,**(), Cheng Wang2,3,**(), Jianlong Wang2,3, Yue Teng1   

  1. 1 Global Energy Internet Research Institute Co., Ltd, Beijing 102209, China
    2 Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
    3 Power Intelligent Manufacturing Joint Research Institute Between Tsinghua University and Weichai Company, Beijing 100084, China
  • Received:2020-03-20 Revised:2020-05-27 Online:2021-10-20 Published:2020-10-20
  • Contact: Qing Zhao, Cheng Wang
  • Supported by:
    the Headquarters of State Grid Corporation of China(No. 5419-201920213A-0-0-00)

固体聚合物水电解制氢技术在可再生能源利用和氢能经济发展中占有极其重要的地位,催化剂是实现高效能源转化的关键。由于聚合物水电解体系的强酸腐蚀性和高氧化电位,其实际应用的催化剂仍以Pt和Ir基催化剂为主。贵金属材料储量有限,价格昂贵,电催化剂成本很高,极大限制了聚合物水电解技术的发展。聚合物水电解催化剂的研究主要集中在降低贵金属用量、提高贵金属利用率和延长催化剂使用寿命等方面。此外,寻找廉价的替代材料,开发非贵金属析氢、析氧电催化剂也是研究的重要内容和发展方向。通过深入认识催化作用机理,结合快速发展的模拟、计算技术,设计制备新型高性能析氢、析氧电催化剂具有重要应用价值。本文总结了当前聚合物水电解体系析氢、析氧催化原理的发展,介绍了新型析氢、析氧催化剂的制备技术和性能研究及双效催化剂的发展,并对提高催化性能的措施做了简单总结和建议,希望对聚合物水电解体系催化剂的进一步研究和发展有积极意义。

Solid polymer electrolyte(SPE) water electrolysis plays an important role in the utilization of renewable resources and the development of the hydrogen economy. Catalyst is the most significant influencial factor to attain a high energy conversion efficiency. Due to the serious corrosion effects and high operation potential in the SPE water electrolysis, commercial catalysts used for the SPE water electrolysis are typically Pt and Ir based materials. However, the limited resources and high price of precious metals lead to expensive catalysis costs and impose huge resitrictions to the development of SPE water electrolysis technology. Investigation of water electrolysis catalysts in the acidic electrolyte mainly focus upon cutting down the usage of precious metals, and improving and extending the ultilization and stability of noble metal catalysts. Moreover, persuing cost-effective alternative materials and developing non-precious hydrogen and oxygen evolution catalysts are the target of searching for efficient SPE water electrolysis catalysts. Combining the in-depth expoloration of catalysis principles and fast advances of simulation and calculation technologies, design and synthesis of the more active hydrogen and oxygen evolution catalysts are of significance influence for the application of SPE water electrolysis. This work makes a summary of current developments of mechamism for SPE water electrolysis, introduces the latest progress of catalyst preparation methods for SPE catalysts, does a simple summary on the development of multiple fuctional catalysts for the hydrogen and oxygen evolution process and provides some suggestions to the investigation of water electrolysis catalysts. We hope this work can play positive roles in the advances of SPE water electrolysis.

Contents

1 Introduction

2 Solid polymer electrolyte water electrolysis

2.1 Mechanism for water electrolysis

2.2 Membrane electrode assembly of solid polymer electrolyte water electrolysis

2.3 New developments of the hydrogen evolution catalysts

2.4 New developments of the oxygen evolution catalysts

2.5 Bifunctional catalysts for hydrogen and oxygen evolution catalysis

3 Conclusion and outlook

()
图1 SPE水电解的工作原理图;DC为直流电[38]
Fig.1 Schematic diagram of SPE water electrolysis, DC is direct current. Copyright 2019, Wiley[38]
图2 催化剂表面HER机理:Volmer-Tafel机理
Fig.2 HER mechanism on catalyst surface: Volmer-Tafel mechanism. Copyright 2019, Wiley
图3 催化剂表面HER机理:Volmer-Heyrovsky机理
Fig.3 HER mechanism on catalyst surface: Volmer-Heyrovsky mechanism. Copyright 2019, Wiley
图4 HER和OER基元反应及催化剂表面吸附态物种(H*、HO*、O*和HOO*)转化:黑球代表C原子,白球代表H原子,红球代表O原子,蓝球代表过渡金属。
Fig.4 Elementary reaction of HER and OER and the transformation of adsorbed species(H*,HO*,O*和HOO*) on catalyst surface: the black spheres represent carbon atoms, white for hydrogen atoms, red for oxygen atoms and blue for transition metals. Copyright 2019,Elsevier
图5 催化剂活性火山形曲线: (a)析氢催化剂火山形曲线;(b) 析氧催化剂火山形曲线
Fig.5 The volcano shape curve of catalyst activities: (a) The activities of hydrogen evolution catalyst;(b) The activities of oxygen evolution catalyst
图6 Pt/NPC催化剂SEM (a)和TEM(b)图;(c) Pt/NPC催化剂低分辨图;(d) Pt/NPC催化剂高分辨图:HAADF-STEM图和相应EDS图:(e) C、(f) N、(g) P、(h) Pt;(i) PtNP在NPC基底上典型HR-TEM图;(j) Pt NP在NPC基底上的尺寸分布;(k) Pt/NPC拉曼图[113]
Fig.6 (a) SEM and (b) TEM images of Pt/NPC.(c) Low-magnification and (d) high-magnification HAADF-STEM images and corresponding EDS maps for(e) C,(f) N,(g) P and (h) Pt of Pt/NPC.(i) HR-TEM image of a typical Pt NP on the NPC substrate.(j) Statistic histogram for the size distribution of the as-prepared Pt NPs on the NPC substrate.(k) Raman spectrum of Pt/NPC. Copyright 2017, Springer[113]
图7 (a) NPC、Pt/NC、Pt/NPC和20% Pt/C极化曲线;(b) Pt/NC、Pt/NPC和20% Pt/C质量活性对比;(c) Pt/NPC在CV循环2000圈前后极化曲线,CV循环电位范围-0.13~0.22 V vs RHE,100 mV·s -1;(d) Pt/NPC催化剂电流时间曲线,恒定过电位-8 mV, 35 h [113]
Fig.7 (a) Polarization curves of NPC, Pt/NC, Pt/NPC, and 20% Pt/C(Alfa);(b) comparison of the mass specific activity of Pt/NC, Pt/NPC, and 20% Pt/C(Alf a) at various potentials(vs RHE);(c) Polarization curves of Pt/NPC before and after CV between -0.13 and 0.22 V vs RHE at 100 mV·s -1 for 2000 cycles; (d) Time dependence of the current density for Pt/NPC at a static overpotential of -8 mV(vs RHE) for 35 h. Copyright 2017, Springer [113]
图8 催化剂合成步骤和物理表征; (a) 催化剂合成步骤;(b) 浸渍酸洗后生成竹节-节点状石墨碳纳米管(GT)及封闭合金NPs SEM图;(c)GT封闭的合金NPs结构TEM图和GT内部合金的HRTEM图;(d) GT封闭的合金NP断面TEM图;(e) HRTEM图证明Fe 3Co 7和Cu在GT内部存在;(f)线扫HAADF-STEM图和断面组成图;(g)断面HAADF图和元素面扫图;(h)(i) Pt-GT-1催化剂TEM图;(h) 放大HRTEM图(i);(j) Pt-GT-1的HRTEM图 [114]
Fig.8 Synthetic procedure and physical characterization. (a) Synthetic procedure; (b) SEM image of the leached sample of bamboo-node-shaped GTs grown with the aid of the enclosed alloy NPs. (c) TEM images of a GT enclosing alloy NPs and HRTEM image of the alloy inside a GT. (d) TEM image of a cross-section of a GT enclosing an alloy NP. (e) The HRTEM image shows the presence of Fe 3Co 7and Cu inside the GT. (f) HAADF-STEM image and the cross-sectional compositional line profiles inside a GT of GT-1.(g) The HAADF image and individual element maps show a cross-section of the GT in the Pt-GT-1 catalyst.(h,i) TEM image of a Pt NP on a GT surface of Pt-GT-1(h) and an enlarged HRTEM image(i). (j) HRTEM images of GTs in Pt-GT-1. Copyright 2018, Springer Nature [114]
图9 GT表面单个Pt原子与Pt团簇/NPs的催化自由能与缺陷的形成和次级Pt黏附能; (a)GT表面活性位点的H吸附自由能(△GH+);(b~d)△GH+对于GT-Cu/FeCo 2(b)的Pt(111)表面的中空位点;Pt 10-GT-Cu/Fe 11Co 27(c)的Pt位点;GT封装Fe 11Co 27合金(d)N活性位点 [114]
Fig.9 Catalytic free energies of single Pt atoms and Pt clusters/NPs on a GT surface along with the defect formation and second Pt adhesion energies. (a) Hydrogen-adsorption free energies(ΔGH+) of selected active sites on a GT surface. (b~d) ΔGH+ for the hollow site of a Pt(111) surface on GT-Cu/FeCo 2(b), the Pt site of Pt 10-GT-Cu/Fe 11Co 27(c) and the N site of a GT that encloses a Fe 11Co 27alloy(d). Copyright 2018, Springer Nature [114]
图10 通过降低尺寸引入曲率结构合理设计的Pt/OLC催化剂; (a) 催化剂制备方法:降低颗粒尺寸制备单原子,并降低催化剂载体,制备0维洋葱结构碳;(b)Pt/OLC催化剂的HAADF-STEM图,证明了Pt单原子结构;(c) Pt/OLC催化剂TEM图表明碳的多层富勒烯结构,碳层间距0.35 nm [115]
Fig.10 Rational design of the Pt/OLC catalyst via reducing the dimensions and introducing curvature. (a) The schematic illustrates the approach taken in this work, whereby catalytically active particles were reduced in size to a single-atom form and the dimensionality of the catalyst support was reduced by using quasi-0D OLCs.(b) The HAADF-STEM image of Pt/OLC clearly displays the Pt single atoms randomly dispersed on the OLC supports.(c) TEM image of Pt/OLC shows a multishell fullerene structure with a layer distance of 0.35 nm. Copyright 2019, Springer Nature [115]
图11 (a) 0.5 M的H 2SO 4溶液中,Pt/OLC催化剂的析氢活性对比;(b) 相应极化曲线推导出的Tafel曲线 [115]
Fig.11 (a) The mass activity of Pt 1/OLC is normalized to the Pt loading at an η of 38 mV with respect to the reference catalysts.(b) Tafel plots derived from the corresponding polarization curves. Copyright 2019, Springer Nature [115]
图12 PtCu RDNFs的制备原理
Fig.12 Schematic illustration of the formation mechanism of PtCu RDNFs. Copyright 2019, Elsevier
图13 (a) TEM图;(b~d) PtCu RDNFs的HAADF-STEM-EDS元素扫描;(e) EDS谱图和(f)线扫图 [116]
Fig.13 (a) TEM images and (b~d) HAADF-STEM-EDS elemental mappings of PtCu RDNFs. The (e) EDS spectrum and (f) line scanning profiles. Copyright 2019, Elsevier [116]
图14 (a) HER极化曲线,N 2饱和0.5 M的H 2SO 4,5 mV·s -1; (b) Tafel曲线;(c) 1000圈扫描前后PtCu RDNFs的极化曲线;(d)-0.07 V下的计时电流曲线;
Fig.14 (a) The HER polarization curves of the catalysts in N 2-saturated 0.5 M H 2SO 4 at 5 mV·s -1.(b) Tafel plots. (c) Polarization curves of PtCu RDNFs before and after 1000 cycles.(d) The chronoamperometric curves at -0.07 V(vs RHE). Copyright 2019, Elsevier
图15 Ru/Pt/Pd@Co-SAs/N-C与Ru@Co-NC的合成原理图和电镜图; (a) Ru/Pt/Pd@Co-SAs/N-C的合成机理;(b) ZnCo-ZIF的TEM图;(c) Co-SAs/N-C;(d)Co-SAs/N-C的HAADF-STEM图;(e) Ru@Co-SAs/N-C的TEM图;(f) Pt@Co-SAs;(g) Pd@Co-SAs/N-C.
Fig.15 Synthetic mechanism and electron microscopy characterization of the Ru/Pt/Pd@Co-SAs/N-C and Ru@Co-NC. (a) Synthesis schematic diagram of Ru/Pt/Pd@Co-SAs/N-C. TEM images of (b) ZnCo-ZIF,(c) Co-SAs/N-C, (d) HAADF-STEM image of Co-SAs/N-C, TEM images of (e) Ru@Co-SAs/N-C,(f) Pt@Co-SAs,(g) Pd@Co-SAs/N-C. Copyright 2019, Elsevier
图16 Cu 3P@NPPC催化剂的制备路线 [168]
Fig.16 Schematic illustration of the preparation of Cu 3P@NPPC catalyst. Copyright 2017, Wiley [168]
图17 (a) HER过程线性电压扫描:0.5 M H 2SO 4;(b)相应的Tafel曲线;(c)Nyquist图(@-0.2 V);(d)Cu 3P@NPPC-650催化剂的HER稳定性测试 [168]
Fig.17 (a) LSV curves of various samples for HER in 0.5 M H 2SO 4and (b) the corresponding Tafel curves; (c) Nyquist plots @-0.2 V; (d) HER stability tests of the Cu 3P@NPPC-650 catalyst. Copyright 2017, Wiley [168]
图18 CoP-InNC@CNT混合结构和CoP-InNC的合成策略 [169]
Fig.18 Schematic illustration of the synthetic process for CoP-InNC and CoP-InNC@CNT composites. Copyright 2020,Wiley [169]
图19 P-Mo 2C@C NWs催化剂制备方法 [170]
Fig.19 Illustration of the synthesis of P-Mo 2C@C NWs. Copyright 2017, Royal Society of Chemistry [170]
图20 P-Mo 2C@C NWs催化剂的形貌结构; (a)SEM图;(b)TEM图;(c)HRTEM;(d) 催化剂元素扫描图 [170]
Fig.20 (a) SEM,(b) TEM, ( c) HR-TEM images of P-Mo 2C@C, and (d) the corresponding elemental mapping. Copyright 2017, Royal Society of Chemistry [170]
图21 Cu@MoS 2催化剂的制备原理 [171]
Fig.21 Schematic illustration of the formation mechanism of Cu@MoS 2. Copyright 2019, Elsevier [171]
图22 Cu@MoS 2催化剂合成方法和机理。Cu@MoS 2与Pt/C和MoS 2的HER活性对比:
Fig.22 Electrochemical activities of the catalyst toward HER. (a) Polarization curves of HER for Cu@MoS 2, Pt/C and MoS 2.(b) Tafel plots. Copyright 2019, Elsevier [171] (a) LSV;(b) Tafel [171]
图23 WN NW/CC电极的 (a)低倍、(b)高倍SEM图和(c~e)元素扫描图 [44]
Fig.23 (a) Low and (b) high-magnification SEM images of WN NW/CC and(c~e) the corresponding elemental mapping. Copyright 2017, Royal Society of Chemistry [44]
图24 催化剂HER电化学活性对比,0.5 M H 2SO 4: (a)极化曲线;(b)相应的Tafel曲线 [44]
Fig.24 (a) Polarization curves and (b) corresponding Tafel plots of WN NW/CC in comparison with those of Pt, WO x/CC and CC and in 0.5 M H 2SO 4, with a scan rate of 2 mV·s -1. Copyright 2017, Royal Society of Chemistry [44]
图25 化学掺杂石墨烯催化剂的HER活性。 (a) 0.5 M H 2SO 4中催化剂的HER活性;(b)Tafel曲线;(c)150 mV,电流密度与扫速函数关系曲线;(d)DFT计算不同结构的吉布斯自由能 [174]
Fig.25 HER activities of chemically doped graphene. (a) Hydrodynamic voltammograms of graphene samples in 0.5 M aqueous H 2SO 4 electrolyte.(b) Tafel plots of the various graphene samples.(c) Differences in current at 150 mV(V vs RHE) as functions of scan rate. d) Gibbs free energy profiles calculated by DFT. Copyright 2019,Wiley [174]
图26 Co@N 1-GY和Co@N 2-GY的最优结构及相应吸附物种最小能量转化路径;
Fig.26 The optimized structures of (a) Co@N 1-GY and (b) Co@N 2-GY; the corresponding minimum energy pathway of the bound Co atom diffused from the stable adsorption site to the neighboring stable site:(c) Co@N 1-GY and (d) Co@N 2-GY. Copyright 2020, Elsevier [178] (a)(c) Co@N 1-GY;(b)(d) Co@N 2-GY [178]
图27 Co@GY、Co@N 2-GY和Co@N 1-GY等催化剂Co活性位自由能计算,U=0 V [178]
Fig.27 Calculated free energy diagram for the OER over the Co site of Co@GY, Co@N 2-GY, and Co@N 1-GY systems at U=0 V. Copyright 2020, Elsevier [178]
图28 IrNi NCs的物理表征图; (a) HAADF-STEM图;(b)(c) TEM图;(d) HRTEM图;(e) IrNi NCs的尺寸分布;(f) XRD谱图;(g) EDX谱图;(h) STEM-EDX元素扫描:Ir,Ni,C [98]
Fig.28 (a) HAADF-STEM image,(b,c) TEM images,(d) HRTEM image, and (e) size distribution of IrNi NCs.(f) XRD pattern and (g) EDX spectrum of the IrNi NCs.(h) STEM-EDX mappings of IrNi NCs. Copyright 2017, Wiley [98]
图29 波浪形Ir纳米线催化剂形貌和尺寸分布合成;(a~c)是一维Ir纳米线的TEM图和高分辨TEM图,(d,e)是相应的EDX和PXRD图 [186]
Fig.29 The morphology and size statistics of as-prepared wavy Ir nanowires.(a~c) the TEM images and high-resolution TEM image of one-dimensional Ir WNWs.(d, e) the corresponding EDX spectrum and PXRD pattern of as-synthesized Ir WNWs.Copyright 2018, Royal Society of Chemistry [186]
图30 Au@Ni 2P核壳催化剂制备原理 [187]
Fig.30 Synthesis mechanism of the core-shell Au@Ni 2P catalyst. Copyright 2019, American Chemical Society [187]
图31 (a) 350 ℃处理前后的OER催化性能;(b) Tafel曲线;(c) @1.47 V RHE电流密度测试;(d) Au@Ni 2P-350 ℃催化剂在1.48 V RHE和1.56 V RHE条件下的稳定性测试 [187]
Fig.31 (a) OER catalyst performance before and after heating at 350 ℃; (b) Tafel plot of different samples;(c) measured current density at 1.47 V vs RHE;(d) stability of Au@Ni 2P-350 ℃ at 1.48 V and 1.56 V vs RHE. Copyright 2019, American Chemical Society [187]
图32 Ru 0.5Ir 0.5O 2 NPs催化剂 (a)形貌图和(b)元素扫描 [190]
Fig.32 High resolution TEM image (a) and STEM image coupled with EDX mapping(b) for Ru 0.5Ir 0.5O 2NPs. Copyright 2020, Elsevier [190]
图33 Ir 6Ag 9 NTs催化剂的形貌表征和组成;
Fig.33 (a) TEM image and size distribution(inset),(b) SEM-EDS,(c) XRD pattern,(d, d 1, d 2)HRTEM images,(e) STEM line scans and (f) HAADF-STEM image and elemental mappings of the Ir 6Ag 9 NWs. Copyright 2019, Elsevier[191] (a) TEM;(b) SEM-EDS;(c) XRD;(d, d 1, d 2) HRTEM;(e) STEM;(f) HAADF-STEM[191]
图34 Co-RuIr纳米晶催化剂的形貌和元素分布; (a) HAADF-STEM;(b) 选择区域放大图;(c) STEM-EDX[192]
Fig.34 (a)HAADF-STEM image of Co-RuIr nanocrystal.(b) An enlarged view of the rectangular region in (a).(c) STEM-EDX mappings of Co-RuIr nanocrystals. Copyright 2019, Wiley[192]
图35 AuCu@IrNi核壳结构纳米粒子的(a,c)TEM图及(b,d)元素扫描[194]
Fig.35 Characterization of AuCu@IrNi core@shell nanoparticles(ACIN-CS). (a,c)TEM images and (b,d) corresponding elemental mapping analysis. Copyright 2019, Royal Society of Chemistry[194]
表1 SPE水电解催化剂的发展方向和技术手段总结
Table 1 Summary of the current advances and implementation methods for SPE water electrolysis catalyst developments
Water electrolysis catalysts Advances Implementation methods
HER catalysts Precious catalysts Development of the precious HER catalysts are aimed at increasing the dispersion and utilization efficiency of precious metals,enhancing the catalytic activity and stability. Lowering the loading of precious metal is of greatest significance for the application of HER catalysis, remarkably cutting down the usage of precious metals and reducing the costs Implenentations of synthesizing the applicable high-performance HER catalysts are focusing on the alloying, doping and modification with economically heterogeneous elements, preparing the stable core-shell structures and applying the morphology control techniques in the synthesis processes. Atomically dispersive preparation method is the latest developed promising catalyst preparing approaches, increasing the catalytic activity and stability simultaneously.
Non-precious catalysts The metal-macrocyclic organic framework catalyst with different doping transitional metals are vigorous developed to catalyze HER process. These non-precious catalysts can significantly cut down the electrolysis costs, making significant contributions to the electrochemical energy storage and conversion. However, increasing the catalytic activity and improving the stability are still the main direction for the development of non-precious HER catalysts. High-performance non-precious HER catalysts are usually prepared through doping and modification approaches. Taking advantage of the functionalized nanomaterials and transitional metals can form catalytic active structures, and increase the density of active sites. Porous structures can also enhance the interaction between catalysts and the electrolyte. Meanwhile, the good conductivity, rich heterogeneous element dopants and evident stress effects significantly increase the electrochemical activity of non-precious HER catalysts.
OER catalysts Precious catalysts The study of precious OER catalysts aimed at reducing the consumption and improving the utilization efficiency of precious metals, so as to cutting down the catalysis cost. The invesitigations focus on increasing the catalyst stability, improving the conductivity and optimizing the catalyst structures to develop the more applicable OER catalysts Increasing the specific surface area and transforming the crystal structure through supporting, doping and modification processes can obviously improve the catalytic activity and stability of precious metal OER catalysts. With high specific surface carrier supported, the dispersion and stability of precious metals are increased, remarkably improving the catalytic activity and lowering the loading of precious metals for the synergetic facilitation of carriers.
Non-precious catalysts Non-noble OER catalysts with high catalytic activity and excellent stability are the most ideal OER catalytic materials, which have great effects on reducing the catalytic costs and extending the application of water electrolysis. Preparing non-precious OER catalysts is still of great challenge today. Further understanding of the catalytic principles and increasing active site density and catalyst stability are still the most important researches. In the acidic water electrolysis systems, the non-precious OER catalysts are very limited, and only a few amorphous nitrides, Co spinel oxides, Ti alloys, and N-doped carbides such as NbN x and ZrN x can be used. Non-precious OER catalysts can be synthesized through the heterogeneous element doping, monatomic dispersion, active site anchoring and protective coating methods.
Bi-functional electrocatalyst HER+OER The high-performance bi-functional hydrogen and oxygen evolution catalysts is of great significance to reduce the cost of acidic water electrolysis. However, improving the catalytic activity is challengeable but meaningful. Preparing the highly active bi-functional catalysts with transitional metal doping process is one of the most important research direction for acidic water electrolysis. For the bifunctional water electoysis catalyst, the transitional metal doping and morphology control methods are commonly used to elevate the catalytic activity through adjusting the molecular structures, active site forms and surface electronic states and changing the combination environment and chemical adsorption property.
[1]
Paidar M , Fateev V , Bouzek K . Electrochim. Acta, 2016, 209: 737.
[2]
Olivier P , Bourasseau C , Bouamama P B . Renewable & Sustainable Energy Reviews, 2017, 78: 280.
[3]
Yang G , Yu S , Kang Z , Dohrmann Y , Bender G , Pivovar B S , Green J B , Retterer S T , Cullen D A , Zhang F Y . Energy Convers. Manage., 2019, 182: 108.
[4]
Allidieres L , Brisse A , Millet P , Valentin S , Zeller M . Int. J. Hydrogen Energy, 2019, 44: 9690.
[5]
Zhang X , Huang L , Wang Q , Dong S . J. Mater. Chem. A, 2017, 5: 18839.
[6]
Brandon N P , Kurban Z . Philosophical Transactions of the Royal Society A-Mathematical Physical and Engineering Sciences, 2017, 375.
[7]
Millet P , Andolfatto F , Durand R . Int. J. Hydrogen Energy, 1996, 21: 87.
[8]
Millet P , Alleau T , Mathonnet P , Pineri M , Durand R . Proceedings of the European Space Power Conference(ESA SP-294), 1989, 245.
[9]
Carmo M , Fritz D L , Merge J , Stolten D . Int. J. Hydrogen Energy, 2013, 38: 4901.
[10]
Sapountzi F M , Gracia J M , Weststrate C J , Fredriksson H O A , Niemantsverdriet J W . Prog. Energy Combust. Sci., 2017, 58: 1.
[11]
Hao C , Lv H , Zhao Q , Li B , Zhang C , Mi C , Song Y , Ma J . Int. J. Hydrogen Energy, 2017, 42: 9384.
[12]
Nouri-Khorasani A , Ojong E T , Smolinka T , Wilkinson D P . Int. J. Hydrogen Energy, 2017, 42: 28665.
[13]
Millet P , Pineri M , Durand R . J. Appl. Electrochem., 1989, 19: 162.
[14]
Valek L , Metikos-Hukovic M , Grubac Z . J. New Mater. Electrochem. Syst., 2006, 9: 145.
[15]
Lu P W T , Srinivasan S . J. Appl. Electrochem., 1979, 9: 269.
[16]
Davenport R J , Schubert F H , Grigger D J . J. Power Sources, 1991, 36: 235.
[17]
Barbir F. Solar Energy, 2005, 78: 661.
[18]
Andolfatto F , Durand R , Michas A , Millet P , Stevens P . Int. J. Hydrogen Energy, 1994, 19: 421.
[19]
Hijikata T. Int. J. Hydrogen Energy, 2002, 27: 115.
[20]
Tsukagoshi T , Mouri K , Hisamatsu T , Watanabe M , Research and Development of Hydrogen Combustion Turbine System in World Energy Network Project in Japan, 1998.
[21]
Mitsugi C , Harumi A , Kenzo F . Int. J. Hydrogen Energy, 1998, 23: 159.
[22]
Zhu Y P , Guo C , Zheng Y , Qiao S Z . Acc. Chem. Res., 2017, 50: 915.
[23]
Park J E , Kim S , Kim O H , Ahn C Y , Kim M J , Kang S Y , Jeon T I , Shim J G , Lee D W , Lee J H , Cho Y H , Sung Y E . Nano Energy, 2019, 58: 158.
[24]
Toghyani S , Fakhradini S , Afshari E , Baniasadi E , Jamalabadi M Y A , Shadloo M S . Int. J. Hydrogen Energy, 2019, 44: 6403.
[25]
Immerz C , Paidar M , Papakonstantinou G , Bensmann B , Bystron T , Vidakovic-Koch T , Bouzek K , Sundmacher K , Hanke-Rauschenbach R . Journal of Applied Electrochemistry, 2018, 48: 701.
[26]
Lafmejani S S , Mueller M , Olesen A C , Kaer S K . J. Power Sources, 2018, 397: 334.
[27]
Cui X , Ren P , Deng D , Deng J , Bao X . Energy & Environmental Science, 2016, 9: 123.
[28]
Zhu Y P , Xu X , Su H , Liu Y P , Chen T , Yuan Z Y . ACS Appl . Mater. Inter., 2015, 7: 28369.
[29]
Zhou W , Zhou J , Zhou Y , Lu J , Zhou K , Yang L , Tang Z , Li L , Chen S . Chem. Mater., 2015, 27: 2026.
[30]
Zeng M , Li Y . J. Mater. Chem. A, 2015, 3: 14942.
[31]
Xiao P , Chen W , Wang X . Advanced Energy Materials, 2015, 5.
[32]
Boshnakova I , Lefteratia E , Slaucheva E . Int. J. Hydrogen Energy, 2018, 43: 16897.
[33]
Carmo M , Keeley G P , Holtz D , Grube T , Robinius M , Mueller M , Stolten D . International Journal of Hydrogen Energy, 2019, 44: 3450.
[34]
Kadakia K , Datta M K , Velikokhatnyi O I , Jampani P , Park S K , Chung S J , Kumta P N . J. Power Sources, 2014, 245: 362.
[35]
Marshall A , Borresen B , Hagen G , Tsypkin M , Tunold R . Energy, 2007, 32: 431.
[36]
Yu H , Bonville L , Jankovic J , Maric R . Appl. Catal. B-Environ., 2020, 260.
[37]
Wang C , Lan F , He Z , Xie X , Zhao Y , Hou H , Guo L , Murugadoss V , Liu H , Shao Q , Gao Q , Ding T , Wei R , Guo Z . Chemsuschem, 2019, 12: 1576.
[38]
Sultan S , Tiwari J N , Singh A N , Zhumagali S , Ha M , Myung C W , Thangavel P , Kim K S . Advanced Energy Materials, 2019, 9.
[39]
Tijani A S , Kamarudin N A B , Mazlan F A B . International Journal of Hydrogen Energy, 2018, 43: 9119.
[40]
Strmcnik D , Lopes P P , Genorio B , Stamenkovic V R , Markovic N M . Nano Energy, 2016, 29: 29.
[41]
Sun H , Yan Z , Liu F , Xu W , Cheng F , Chen J . Adv. Mater., 2020, 32.
[42]
Chen W F , Muckerman J T , Fujita E . Chem. Commun., 2013, 49: 8896.
[43]
Li A , Sun Y , Yao T , Han H . Chemistry-A European Journal, 2018, 24: 18334.
[44]
Ren B , Li D , Jin Q , Cui H , Wang C . J. Mater. Chem. A, 2017, 5: 19072.
[45]
Yu P , Wang F , Shifa T A , Zhan X , Lou X , Xia F , He J . Nano Energy, 2019, 58: 244.
[46]
Devadas B , Imae T . Electrochem. Commun., 2016, 72: 135.
[47]
Conway B E , Tilak B V . Electrochim. Acta, 2002, 47: 3571.
[48]
Tan Y , Liu P , Chen L , Cong W , Ito Y , Han J , Guo X , Tang Z , Fujita T , Hirata A , Chen M . Adv. Mater., 2014, 26: 8023.
[49]
Morales-Guio C G , Stern L A , Hu X . Chem. Soc. Rev., 2014, 43: 6555.
[50]
Vesborg P C K , Seger B , Chorkendorff I . Journal of Physical Chemistry Letters, 2015, 6: 951.
[51]
Khalafallah D , Zhi M , Hong Z . Top. Curr. Chem., 2019, 377.
[52]
Li J , Yan M , Zhou X , Huang Z Q , Xia Z , Chang C R , Ma Y , Qu Y . Adv. Funct. Mater., 2016, 26: 6785.
[53]
Murthy A P , Madhavan J , Murugan K . J. Power Sources, 2018, 398: 9.
[54]
Shi Y , Zhang B . Chem. Soc. Rev., 2016, 45: 1529.
[55]
Bao T , Song L , Zhang S . Chem. Eng. J., 2018, 351: 189.
[56]
Choquette Y , Brossard L , Lasia A , Menard H . J. Electrochem. Soc., 1990, 137: 1723.
[57]
Elezovic N R , Jovic V D , Krstajic N V . Electrochim. Acta, 2005, 50: 5594.
[58]
Sheng W C , Gasteiger H A , Yang S H . J. Electrochem. Soc., 2010, 157: B1529.
[59]
Vilekar S A , Fishtik I , Datta R . J. Electrochem. Soc., 2010, 157: B1040.
[60]
Durst J , Simon C , Siebel A , Rheinlaender P , Schuler T , Hanzlik M , Herranz J , Hasche F , Gasteiger H A . in Polymer Electrolyte Fuel Cells 14, eds. Gasteiger H A, Uchida H, Buchi F N, SwiderLyons K, Jones D, Ramani V, Schmidt T J, Weber A, Fenton J M, Meas Y, Shinohara K, Edmundson M, Perry K A, Coutanceau C, Mitsushima S, Strasser P, Mantz R, Fuller T, Narayanan S R. 2014, vol. 64, pp. 1069.
[61]
Wang X , Vasileff A , Jiao Y , Zheng Y , Qiao S Z . Adv. Mater., 2019, 31.
[62]
Li J , Zheng G . Advanced Science, 2017, 4.
[63]
Zhu C , Fu S , Shi Q , Du D , Lin Y . Angew. Chem. Int. Ed., 2017, 56: 13944.
[64]
Gao X , Zhou Y , Tan Y , Liu S , Cheng Z , Shen Z . Appl. Surf. Sci., 2019, 492: 8.
[65]
Garcia-Navarro J C , Schulze M , Friedrich K A . J. Power Sources, 2019, 431: 189.
[66]
De S , Zhang J , Luque R , Yan N . Energy & Environmental Science, 2016, 9: 3314.
[67]
Grigoriev S A , Bessarabov D G , Fateev V N . Russ. J. Electrochem., 2017, 53: 318.
[68]
Sung C C , Liu C Y . Int. J. Hydrogen Energy, 2013, 38: 10063.
[69]
Millet P , Ngameni R , Grigoriev S A , Mbemba N , Brisset F , Ranjbari A , Etievant C . Int. J. Hydrogen Energy, 2010, 35: 5043.
[70]
TOYOTA MOTOR CORP. WO2017159820- A1, JP2019083085-A. 2017.
[71]
Zeng Y , Guo X , Shao Z , Yu H , Song W , Wang Z , Zhang H , Yi B . J. Power Sources, 2017, 342: 947.
[72]
Shi Y , Lu Z , Guo L , Yan C . Int. J. Hydrogen Energy, 2017, 42: 26183.
[73]
Mo J , Kang Z , Yang G , Li Y , Retterer S T , Cullen D A , Toops T J , Bender G , Pivovar B S , Green J B , Zhang F Y . J. Mater. Chem. A, 2017, 5: 18469.
[74]
Grigoriev S A , Bessarabov D G , Glukhov A S . Russ. J. Electrochem., 2017, 53: 808.
[75]
Baumann N , Cremers C , Pinkwart K , Tuebke J . Energy Technology, 2016, 4: 212.
[76]
Wang X , Shao Z G , Li G , Zhang L , Zhao Y , Lu W , Yi B . J. Power Sources, 2013, 240: 525.
[77]
Su H , Linkov V , Bladergroen B J . Int. J. Hydrogen Energy, 2013, 38: 9601.
[78]
Su H , Bladergroen B J , Linkov V , Pasupathi S , Ji S . Int. J. Hydrogen Energy, 2011, 36: 15081.
[79]
Song S , Zhang H , Ma X , Shao Z , Baker R T , Yi B . Int. J. Hydrogen Energy, 2008, 33: 4955.
[80]
Klingele M , Breitwieser M , Zengerle R , Thiele S . J. Mater. Chem. A, 2015, 3: 11239.
[81]
Klingele M , Britton B , Breitwieser M , Vierrath S , Zengerle R , Holdcroft S , Thiele S . Electrochem. Commun., 2016, 70: 65.
[82]
Schaefer H , Kuepper K , Schmidt M , Mueller-Buschbaum K , Stangl J , Daum D , Steinhart M , Schulz-Koelbel C , Han W , Wollschlaeger J , Krupp U , Hou P , Liu X . Catalysis Science & Technology, 2018, 8: 2104.
[83]
Lu H , Song Y , Hao C . Journal of Central South University(Science and Technology), 2015, 46: 4671.
[84]
Siracusano S , Baglio V , Stassi A , Ornelas R , Antonucci V , Arico A S . Int. J. Hydrogen Energy, 2011, 36: 7822.
[85]
Cruz J C , Baglio V , Siracusano S , Ornelas R , Ortiz-Frade L , Arriaga L G , Antonucci V , Arico A S . J. Nanopart. Res., 2011, 13: 1639.
[86]
Cruz J C , Baglio V , Siracusano S , Antonucci V , Arico A S , Ornelas R , Ortiz-Frade L , Osorio-Monreal G , Duron-Torres S M , Arriaga L G . International Journal of Electrochemical Science, 2011, 6: 6607.
[87]
Wei G , Wang Y , Huang C , Gao Q , Wang Z , Xu L . Int. J. Hydrogen Energy, 2010, 35: 3951.
[88]
Baglio V , Di Blasi A , Denaro T , Antonucci V , Arico A S , Ornelas R , Matteucci F , Alonso G , Morales L , Orozco G , Arriaga L G . J. New Mater. Electrochem. Syst., 2008, 11: 105.
[89]
Albert A , Barnett A O , Thomassen M S , Schmidt T J , Gubler L . ACS Appl . Mater. Inter., 2015, 7: 22203.
[90]
Grigoriev S A , Dzhus K A , Bessarabov D G , Millet P . Int. J. Hydrogen Energy, 2014, 39: 20440.
[91]
Ding X , Didari S , Fuller T F , Harris T A L . J. Electrochem. Soc., 2012, 159: B746.
[92]
Ding X , Liu J , Harris T A L . AlChE J., 2016, 62: 2508.
[93]
Burdzik A , Staehler M , Friedrich I , Carmo M , Stolten D . Journal of Coatings Technology and Research, 2018, 15: 1423.
[94]
Karimi F , Peppley B A . Int. J. Hydrogen Energy, 2017, 42: 5083.
[95]
Mayousse E , Maillard F , Fouda-Onana F , Sicardy O , Guillet N . Int. J. Hydrogen Energy, 2011, 36: 10474.
[96]
Wang J , Yue X , Yang Y , Sirisomboonchai S , Wang P , Ma X , Abudula A , Guan G . J. Alloys Compd., 2020, 819.
[97]
Siracusano S , Baglio V , D’Urso C , Antonucci V , Arico A S . Electrochim. Acta, 2009, 54: 6292.
[98]
Pi Y , Shao Q , Wang P , Guo J , Huang X . Adv. Funct. Mater., 2017, 27.
[99]
Saveleva V A , Wang L , Luo W , Zafeiratos S , Ulhaq-Bouille C , Gago A S , Friedrich K A , Savinova E R . Journal of Physical Chemistry Letters, 2016, 7: 3240.
[100]
Xu C , Ma L , Li J , Zhao W , Gan Z . Int. J. Hydrogen Energy, 2012, 37: 2985.
[101]
Felix C , Maiyalagan T , Pasupathi S , Bladergroen B , Linkov V . International Journal of Electrochemical Science, 2012, 7: 12064.
[102]
Cruz J C , Ramos Hernandez A, Guerra-Balcazar M , Chavez-Ramirez A U , Ledesma-Garcia J , Arriaga L G . International Journal of Electrochemical Science, 2012, 7: 7866.
[103]
Ye F , Li J , Wang X , Wang T , Li S , Wei H , Li Q , Christensen E . Int. J. Hydrogen Energy, 2010, 35: 8049.
[104]
Cheng J , Zhang H , Ma H , Zhong H , Zou Y . Electrochim. Acta, 2010, 55: 1855.
[105]
Zhang J , Xu X , Yang L , Cheng D , Cao D . Small Methods, 2019.
[106]
Wu C , Li D , Ding S , Rehman Z U , Liu Q , Chen S , Zhang B , Song L . Journal of Physical Chemistry Letters, 2019, 10: 6081.
[107]
Ramakrishnan S , Karuppannan M , Vinothkannan M , Ramachandran K , Kwon O J , Yoo D J . ACS Appl . Mater. Inter., 2019, 11: 12504.
[108]
Briguglio N , Siracusano S , Bonura G , Sebastian D , Arico A S . Appl. Catal. B-Environ., 2019, 246: 254.
[109]
Kumar S S , Himabindu V . Renewable Energy, 2020, 146: 2281.
[110]
Pu Z , Amiinu I S , Cheng R , Wang P , Zhang C , Mu S , Zhao W , Su F , Zhang G , Liao S , Sun S . Nano-Micro Letters, 2020, 12.
[111]
Yu F , Zhou H , Huang Y , Sun J , Qin F , Bao J , Goddardiii W A , Chen S , Ren Z . Nature Communications, 2018, 9.
[112]
Bao M , Amiinu I S , Peng T , Li W , Liu S , Wang Z , Pu Z , He D , Xiong Y , Mu S . ACS Energy Letters, 2018, 3: 940.
[113]
Wang C , Hu F , Yang H , Zhang Y , Lu H , Wang Q . Nano Research, 2017, 10: 238.
[114]
Tiwari J N , Sultan S , Myung C W , Yoon T , Li N , Ha M , Harzandi A M , Park H J , Kim D Y , Chandrasekaran S S , Lee W G , Vij V , Kang H , Shin T J , Shin H S , Lee G , Lee Z , Kim K S . Nature Energy, 2018, 3: 773.
[115]
Liu D , Li X , Chen S , Yan H , Wang C , Wu C , Haleem Y A , Duan S , Lu J , Ge B , Ajayan P M , Luo Y , Jiang J , Song L . Nature Energy, 2019, 4: 512.
[116]
Niu H J , Chen H Y , Wen G L , Feng J J , Zhang Q L , Wang A J . J. Colloid Interface Sci., 2019, 539: 525.
[117]
Xu J , Liu T , Li J , Li B , Liu Y , Zhang B , Xiong D , Amorim I , Li W , Liu L . Energy & Environmental Science, 2018, 11: 1819.
[118]
Gao H , Zang J , Liu X , Wang Y , Tian P , Zhou S , Song S , Chen P , Li W . Appl. Surf. Sci., 2019, 494: 101.
[119]
Yuan S , Pu Z , Zhou H , Yu J , Amiinu I S , Zhu J , Liang Q , Yang J , He D , Hu Z , van Tendeloo G, Mu S . Nano Energy, 2019, 59: 472.
[120]
Su J , Zhou J , Wang L , Liu C , Chen Y . Science Bulletin, 2017, 62: 633.
[121]
Zhao H , Yuan Z Y . Catalysis Science & Technology, 2017, 7: 330.
[122]
Kim H , Park H , Oh S , Kim S K . International Journal of Energy Research, 2019.
[123]
Dong Q , Meng Z , Ho C L , Guo H , Yang W , Manners I , Xu L , Wong W Y . Chem. Soc. Rev., 2018, 47: 4934.
[124]
Wang M Q , Ye C , Liu H , Xu M , Bao S J . Angew. Chem. Int. Ed., 2018, 57: 1963.
[125]
Zhang Z , Liu S , Xiao J , Wang S . J. Mater. Chem. A, 2016, 4: 9691.
[126]
Wang W , Lv F , Lei B , Wan S , Luo M , Guo S . Adv. Mater., 2016, 28: 10117.
[127]
Barrozo A , Orio M . ChemSusChem, 2019, 12: 4905.
[128]
Hu J , Zhang C , Meng X , Lin H , Hu C , Long X , Yang S . J. Mater. Chem. A, 2017, 5: 5995.
[129]
Yan Y , Xia B Y , Zhao B , Wang X . J. Mater. Chem. A, 2016, 4: 17587.
[130]
Callejas J F , Read C G , Popczun E J , McEnaney J M , Schaak R E . Chem. Mater., 2015, 27: 3769.
[131]
Shi Y , Zhang B . Chem. Soc. Rev., 2016, 45: 1781.
[132]
Henkes A E , Schaak R E . Chem. Mater., 2007, 19: 4234.
[133]
Read C G , Callejas J F , Holder C F , Schaak R E . ACS Appl . Mater. Inter., 2016, 8: 12798.
[134]
Prins R , Bussell M E . Catal. Lett., 2012, 142: 1413.
[135]
Zhou Y , Gao G , Kang J , Chu W , Wang L W . Nanoscale, 2019, 11: 18169.
[136]
Pu Z , Liu Q , Tang C , Asiri A M , Sun X . Nanoscale, 2014, 6: 11031.
[137]
Lin Y , Zhang J , Pan Y , Liu Y . Appl. Surf. Sci., 2017, 422: 828.
[138]
Liu P , Rodriguez J A . J. Am. Chem. Soc., 2005, 127: 14871.
[139]
Ma B , Yang Z , Chen Y , Yuan Z . Nano Research, 2019, 12: 375.
[140]
Liu Z , Ai J , Sun M , Han F , Li Z , Peng Q , Wang Q D , Liu J , Liu L . Adv. Funct. Mater., 2020.
[141]
Xu Y , Wu R , Zhang J , Shi Y , Zhang B . Chem. Commun., 2013, 49: 6656.
[142]
Anantharaj S , Ede S R , Sakthikumar K , Karthick K , Mishra S , Kundu S . ACS Catalysis, 2016, 6: 8069.
[143]
Wang C , Jiang J , Zhou X , Wang W , Zuo J , Yang Q . J. Power Sources, 2015, 286: 464.
[144]
Xiao J , Lv Q , Zhang Y , Zhang Z , Wang S . RSC Advances, 2016, 6: 107859.
[145]
Yu X Y , Feng Y , Guan B , Lou X W , Paik U . Energy & Environmental Science, 2016, 9: 1246.
[146]
Xu Y , Kraft M , Xu R . Chem. Soc. Rev., 2016, 45: 3039.
[147]
Jin Z , Li P , Xiao D . Green Chemistry, 2016, 18: 1459.
[148]
Han L , Wang P , Liu H , Tan Q , Yang J . J. Mater. Chem. A, 2016, 4: 18354.
[149]
Pan Y , Chen Y , Lin Y , Cui P , Sun K , Liu Y , Liu C . J. Mater. Chem. A, 2016, 4: 14675.
[150]
Dresp S , Luo F , Schmack R , Kuehl S , Gliech M , Strasser P . Energy & Environmental Science, 2016, 9: 2020.
[151]
Jia Y , Zhang L , Du A , Gao G , Chen J , Yan X , Brown C L , Yao X . Adv. Mater., 2016, 28: 9532.
[152]
Guterman V E , Belenov S V , Pakharev A Y , Min M , Tabachkova N Y , Mikheykina E B , Vysochina L L , Lastovina T A . Int. J. Hydrogen Energy, 2016, 41: 1609.
[153]
Wang J , Johnston-Peck A C , Tracy J B . Chem. Mater., 2009, 21: 4462.
[154]
Ledendecker M , Calderon S K , Papp C , Steinrueck H P , Antonietti M , Shalom M . Angew. Chem. Int. Ed., 2015, 54: 12361.
[155]
Wang W , An T , Li G , Xia D , Zhao H , Yu J C , Wong P K . Appl. Catal. B-Environ., 2017, 217: 570.
[156]
Zeng D , Xu W , Ong W J , Xu J , Ren H , Chen Y , Zheng H , Peng D L . Appl. Catal. B-Environ., 2018, 221: 47.
[157]
Sun Z , Zhu M , Fujitsuka M , Wang A , Shi C , Majima T . ACS Appl . Mater. Inter., 2017, 9: 30583.
[158]
Chiang R K , Chiang R T . Inorg. Chem., 2007, 46: 369.
[159]
Pan Y , Liu Y , Zhao J , Yang K , Liang J , Liu D , Hu W , Liu D , Liu Y , Liu C . J. Mater. Chem. A, 2015, 3: 1656.
[160]
Kucernak A R J , Sundaram V N N . J. Mater. Chem. A, 2014, 2: 17435.
[161]
Pan Y , Yang N , Chen Y , Lin Y , Li Y , Liu Y , Liu C . J. Power Sources, 2015, 297: 45.
[162]
Wang S , Zhang L , Li X , Li C , Zhang R , Zhang Y , Zhu H . Nano Research, 2017, 10: 415.
[163]
Liang Q , Zhong L , Du C , Zheng Y , Luo Y , Xu J , Li S , Yan Q . Adv. Funct. Mater., 2018, 28.
[164]
Mu J , Li J , Yang E C , Zhao X J . ACS Applied Energy Materials, 2018, 1: 3742.
[165]
Mo Q , Zhang W , He L , Yu X , Gao Q . Appl. Catal. B-Environ., 2019, 244: 620.
[166]
Cao M , Xue Z , Niu J , Qin J , Sawangphruk M , Zhang X , Liu R . ACS Appl . Mater. Inter., 2018, 10: 35224.
[167]
Jiang D , Ma W , Yang R , Quan B , Li D , Meng S , Chen M . Electrochim. Acta, 2020, 329.
[168]
Wang R , Dong X Y , Du J , Zhao J Y , Zang S Q . Adv. Mater., 2018, 30.
[169]
Chai L , Hu Z , Wang X , Xu Y , Zhang L , Li T T , Hu Y , Qian J , Huang S . Advanced Science, 2020.
[170]
Shi Z , Nie K , Shao Z J , Gao B , Lin H , Zhang H , Liu B , Wang Y , Zhang Y , Sun X , Cao X M , Hu P , Gao Q , Tang Y . Energy & Environmental Science, 2017, 10: 1262.
[171]
Ji L , Yan P , Zhu C , Ma C , Wu W , Wei C , Shen Y , Chu S , Wang J , Du Y , Chen J , Yang X , Xu Q . Appl. Catal. B-Environ., 2019, 251: 87.
[172]
Ji Y , Dong H , Liu C , Li Y . Nanoscale, 2019, 11: 454.
[173]
Gao X , Zhou Y , Tan Y , Yang B , Cheng Z , Shen Z , Jia J . Appl. Surf. Sci., 2019, 473: 770.
[174]
Kumatani A , Miura C , Kuramochi H , Ohto T , Wakisaka M , Nagata Y , Ida H , Takahashi Y , Hu K , Jeong S , Fujita J I , Matsue T , Ito Y . Advanced Science, 2019, 6.
[175]
Han X , Ling X , Yu D , Xie D , Li L , Peng S , Zhong C , Zhao N , Deng Y , Hu W . Adv. Mater., 2019, 31.
[176]
Zhang G R , Woellner S . Appl. Catal. B-Environ., 2018, 222: 26.
[177]
Anantharaj S , Noda S . Small, 2020, 16.
[178]
Gao X , Zhou Y , Liu S , Cheng Z , Tan Y , Shen Z . Appl. Surf. Sci., 2020, 502.
[179]
Wang L , Duan X , Liu X , Gu J , Si R , Qiu Y , Qiu Y , Shi D , Chen F , Sun X , Lin J , Sun J . Advanced Energy Materials, 2019.
[180]
Han S , Yun Q , Tu S , Zhu L , Cao W , Lu Q . J. Mater. Chem. A, 2019, 7: 24691.
[181]
Arminio-Ravelo J A , Quinson J , Pedersen M A , Kirkensgaard J J K , Arenz M , Escudero-Escribano M . CheMcatChem, 2020, 125: 1282.
[182]
Han S B , Mo Y H , Lee Y S , Lee S G , Park D H , Park K W . Int. J. Hydrogen Energy, 2020, 45: 1409.
[183]
Nong H N , Oh H S , Reier T , Willinger E , Willinger M G , Petkov V , Teschner D , Strasser P . Angew. Chem. Int. Ed., 2015, 54: 2975.
[184]
Sugita Y , Tamaki T , Kuroki H , Yamaguchi T . Nanoscale Advances, 2020, 2: 171.
[185]
Sun X , Liu F , Chen X , Li C , Yu J , Pan M . Electrochim. Acta, 2019, 307: 206.
[186]
Fu L , Yang F , Cheng G , Luo W . Nanoscale, 2018, 10: 1892.
[187]
Cai C , Han S , Wang Q , Gu M . ACS Nano, 2019, 13: 8865.
[188]
Cao L , Luo Q , Chen J , Wang L , Lin Y , Wang H , Liu X , Shen X , Zhang W , Liu W , Qi Z , Jiang Z , Yang J , Yao T . Nature Communications, 2019, 10.
[189]
Zhu B , Qu C , Gao S , Liang Z , Zhang H , Zou R . Chemcatchem, 2018, 10: 1113.
[190]
Nguyen T D , Nguyen H H , Dai C , Wang J , Scherer G G . Int. J. Hydrogen Energy, 2020, 45: 46.
[191]
Zhu M , Shao Q , Qian Y , Huang X . Nano Energy, 2019, 56: 330.
[192]
Shan J , Ling T , Davey K , Zheng Y , Qiao S Z . Adv. Mater., 2019, 31.
[193]
Fan Z , Jiang J , Ai L , Shao Z , Liu S . ACS Appl . Mater. Inter., 2019, 11: 47894.
[194]
Park J , Choi S , Oh A , Jin H , Joo J , Baik H , Lee K . Nanoscale Horizons, 2019, 4: 727.
[195]
Tang S , Zhou X , Liu T , Zhang S , Yang T , Luo Y , Sharman E , Jiang J . J. Mater. Chem. A, 2019, 7: 26261.
[1] 贾斌, 刘晓磊, 刘志明. 贵金属催化剂上氢气选择性催化还原NOx[J]. 化学进展, 2022, 34(8): 1678-1687.
[2] 刘洋洋, 赵子刚, 孙浩, 孟祥辉, 邵光杰, 王振波. 后处理技术提升燃料电池催化剂稳定性[J]. 化学进展, 2022, 34(4): 973-982.
[3] 苏原, 吉可明, 荀家瑶, 赵亮, 张侃, 刘平. 甲醛氧化催化剂及反应机理[J]. 化学进展, 2021, 33(9): 1560-1570.
[4] 郭芬岈, 李宏伟, 周孟哲, 徐正其, 郑岳青, 黎挺挺. 基于非贵金属催化剂常温常压电化学合成氨[J]. 化学进展, 2020, 32(1): 33-45.
[5] 赵倩, 葛云丽, 纪娜, 宋春风, 马德刚, 刘庆岭. 催化氧化技术在可挥发性有机物处理的研究[J]. 化学进展, 2016, 28(12): 1847-1859.
[6] 宋世栋,张华民,马霄平,张益宁,衣宝廉. 一体式可再生燃料电池[J]. 化学进展, 2006, 18(10): 1375-1380.
[7] 王建伟,米镇涛,张香文. 贵金属芳烃饱和催化剂研究进展[J]. 化学进展, 2006, 18(0708): 854-860.