English
新闻公告
More
化学进展 2020, Vol. 32 Issue (2/3): 219-229 DOI: 10.7536/PC190824 前一篇   后一篇

• •

锕系元素分离研究:不对称双酰胺荚醚的萃取化学及应用

刘耀阳1, 刘志斌1, 赵闯1, 周羽1, 高杨1,**(), 何辉1,2   

  1. 1. 哈尔滨工程大学核科学与技术学院 哈尔滨 150001
    2. 中国原子能科学研究院 北京 102413
  • 收稿日期:2019-08-22 出版日期:2020-03-15 发布日期:2019-12-19
  • 通讯作者: 高杨
  • 基金资助:
    哈尔滨工程大学中央高校基本科研业务费(GK2150260176)

Separation of Actinides: Extraction Chemistry and Application of Unsymmetric Diglycolamides

Yaoyang Liu1, Zhibin Liu1, Chuang Zhao1, Yu Zhou1, Yang Gao1,**(), Hui He1,2   

  1. 1. College of Nuclear Science and Technology, Harbin Engineering University, Harbin 150001, China
    2. China Institute of Atomic Energy, Beijing 102413, China
  • Received:2019-08-22 Online:2020-03-15 Published:2019-12-19
  • Contact: Yang Gao
  • About author:
  • Supported by:
    Special Fund of Central University Basic Scientific Research Fee(GK2150260176)

PUREX乏燃料后处理流程排放出的高放废液,集中了乏燃料中95% 以上的放射性,其中半衰期长、毒性大的次锕系核素是需要在地质处置库中将高放废液与生物圈隔离10万年以上的因素之一。为了更安全可靠地解决高放废液问题,国际上提出了“分离-嬗变”技术,即利用化学方法,将次锕系元素和长寿命裂变产物元素从高放废液中分离出来,根据分离出来元素的性质,对其加以利用或使其嬗变。分离-嬗变技术中的关键是对高放废液中不同类别元素的有效分离。双酰胺荚醚类萃取剂对高放废液中三价锕系、镧系元素展现出了优异的萃取性能,尤其是不对称双酰胺荚醚,在保持相应的对称性双酰胺荚醚良好的萃取性能的同时,在缓解或避免萃取过程中第三相形成方面也有较大优势。本文就不对称酰胺荚醚的历史沿革、合成方法、萃取性能、配位机理、流程工艺以及三相形成等几个方面进行了综述,就多种不对称双酰胺荚醚萃取剂对锕系、镧系及其他主要裂片元素的萃取分配比、分离系数、三相形成临界参数等进行了比较,对该类萃取剂后续的结构设计、配位机理研究及流程应用等方向提供了参考性建议。

The high level liquid waste(HLLW) generated from PUREX reprocessing process contains more than 95% radioactivity of the spent fuel. Among HLLW, minor actinides with long half-life and high toxicity are one of the main factors that need to isolate HLLW from the biosphere for more than 100 000 years in the deep geological repositories. In order to solve the problem of HLLW more safely and reliably, “separation-transmutation” technology has been put forward, that is, the minor actinides and long-lived fission product elements are separated from HLLW by chemical methods, and then the separated elements are utilized or transmuted according to their properties. The effective separation of different kinds of elements from HLLW is the key step in the separation-transmutation technology. The diglycolamide extractants exhibit excellent extractability towards trivalent actinides and lanthanides in HLLW. In particular, the unsymmetric diglycolamides have greater advantage than the corresponding symmetric diglycolamides in relieving or avoiding the formation of the third phase in the extraction process, and at the same time maintain the good extraction performances. In this paper, the development history, synthesis method, extraction performance, coordination mechanism, flow process, and the third phase formation of unsymmetric diglycolamides are reviewed. The extraction ratio, the separation factor and the critical parameters of the third phase formation of lanthanides, actinides and other major fission elements are compared. Some suggestions are provided for the structural design, coordination mechanism research and process application of the unsymmetric diglycolamides.

()
图1 对称双酰胺荚醚结构
Fig.1 Symmetric diglycolamides structure
图2 不对称双酰胺荚醚结构
Fig.2 Unsymmetric diglycolamides structure
图式1 (1)仲胺和酸酯反应酰胺化过程合成不对称双酰胺荚醚流程;(2)仲胺和酸酐反应酰胺化过程合成不对称双酰胺荚醚流程;(3)仲胺和酰氯反应酰胺化过程合成不对称双酰胺荚醚流程
Scheme 1 (1) Synthesis of unsymmetric diglycolamides by secondary amines and acid esters;(2) Synthesis of unsymmetric diglycolamides by secondary amines and anhydrides;(3) Synthesis of unsymmetric diglycolamides by secondary amines and acyl chlorides
图3 不对称双酰胺荚醚结构
Fig.3 Unsymmetric diglycolamides structure
表1 Sr(Ⅱ)/Am(Ⅲ)分离系数与水相HNO3浓度的关系[29]
Table 1 Relationship between separation coefficient of Sr(Ⅱ)/Am(Ⅲ) and concentration of HNO3 in aqueous phase[29]
表2 多种不对称双酰胺荚醚萃取体系Nd(Ⅲ)与HNO3 CAC值与LOC值
Table 2 CAC and LOC of Nd(Ⅲ) and HNO3 in various unsymmetric diglycolamides extraction systems
[1]
姜圣阶(Jiang S J), 任凤仪(Ren F Y), 马瑞华(Ma R H) . 核燃料后处理工学 (Engineering of Nuclear Fuel Reprocess). 北京: 原子能出版社 (Beijing: Atomic Energy Press), 1995. 162.
[2]
何涌(He Y) . 辐射防护 (Radioprotection), 2001,21(1):43.
[3]
甘学英(Gan X Y), 张振涛(Zhang Z T), 苑文仪(Yuan W Y) . 辐射防护 (Radioprotection), 2011,31(2):76.
[4]
韦悦周(Wei Y Z) . 化学进展 (Progress in Chemistry), 2011,23(7):1272.
[5]
田国新(Tian G X) . 核化学与放射化学 (Journal of Nuclear and Radiochemistry), 2015,37(5):276.
[6]
Mincher B J, Modolo G, Mezyk S P . Solvent Extr. Ion Exch., 2009,27:579. http://www.tandfonline.com/doi/abs/10.1080/07366290903114098

doi: 10.1080/07366290903114098     URL    
[7]
Nilsson M, Nash K L . Solvent Extr. Ion Exch., 2007,25:665. http://www.tandfonline.com/doi/abs/10.1080/07366290701634636

doi: 10.1080/07366290701634636     URL    
[8]
Schulz W W, Horwitz E P . Sep. Sci. Technol., 1988,23:1191.
[9]
Liljenzin J, Persson G, Svantesson I . Radiochim. Acta, 1984,35:163.
[10]
Huang P W, Wang C Z, Wu Q Y, Lan J H, Song G, Chai Z F, Shi W Q . Dalton Trans., 2018,47:5474. https://www.ncbi.nlm.nih.gov/pubmed/29611580

doi: 10.1039/c8dt00134k     URL     pmid: 29611580
[11]
Wang C Z, Shi W Q, Lan J H, Zhao Y L, Wei Y Z, Chai Z F . Inorg. Chem., 2013,52:10904. https://www.ncbi.nlm.nih.gov/pubmed/24047245

doi: 10.1021/ic400895d     URL     pmid: 24047245
[12]
Logunov V, Voroshilov A, Starovoitov P, Shadrin A, Smirnov I V, Kvasnitskii I B, Tananaev I G, Myasoedov B F, Morgalyuk V P, Kamiya M, Koma I, Koyama T . Radiochem., 2006,48:55.
[13]
Madic C, Blanc P, Condamines N . International Conference on Nuclear Fuel Reprocessing and Waste Management. London: RECOD, 1994. 20. https://www.ncbi.nlm.nih.gov/pubmed/9915640

doi: 10.1088/0952-4746/18/4/004     URL     pmid: 9915640
[14]
Ansari S A, Pathak P, Mohapatra P K, Manchanda V K . Chem. Rev., 2012,112:1751. https://www.ncbi.nlm.nih.gov/pubmed/22053797

doi: 10.1021/cr200002f     URL     pmid: 22053797
[15]
Yuan H, Hong W, Zhou Y, Pu B, Gong A J, Xu T, Yang Q S, Li F K, Qiu L N, Zhang W W, Liu Y N . J. of Rare Earth, 2018,36:642.
[16]
Xu D, Shah Z, Cui Y, Jin L M, Zhang H, Sun G X . Hydrometallurgy, 2018,180:132.
[17]
Gergoric M, Ekberg C, Foreman J, Steenari B M, Retegan T . J. of Sustain. Metal., 2017,3:638.
[18]
Sasaki Y, Sugo Y, Suzuki S, Shoichi T . Solvent Extr. Ion Exch., 2001,19:91.
[19]
Modolo G, Asp H, Schreinemachers C, Vijgen H . Solvent Extr. Ion Exch., 2007,25:703.
[20]
Magnusson D, Christiansen B, Glatz J P, Malmbeck R, Modold G . Solvent Extr. Ion Exch., 2009,27:26.
[21]
Peng X J, Cui Y, Ma J F, Li Y L, Sun G X . Nucl. Sci. Tech., 2017,28:87.
[22]
Gujar R B, Ansari S A, Prabhu D R, Raut D R, Pathak P N, Sengupta A, Thulasidas S K, Mohapatra P K, Manchanda V K . Solvent Extr. Ion Exch., 2010,28:764.
[23]
Gujar R B, Ansari S A, Murali M S, Mohapatra P K, Manchanda V K . J. Radioanal. Nucl. Chem., 2010,284:377.
[24]
Gujar R B, Ansari S A, Mohapatra P K, Manchanda V K . Solvent Extr. Ion Exch., 2010,28:350.
[25]
Ganguly R, Sharma J N, Choudhury N . J. Colloid Interface Sci., 2011,355:458. https://www.ncbi.nlm.nih.gov/pubmed/21216411

doi: 10.1016/j.jcis.2010.12.039     URL     pmid: 21216411
[26]
Whittaker D, Geist A, Modolo G, Taylor R, Sarsfield M, Wilden A . Solvent Extr. Ion Exch., 2018,36:223.
[27]
Panja S, Ruhela R, Misra S K, Sharma J N, Tripathi S C, Dakshinamoorthy A . J. Membr. Sci., 2008,325:158.
[28]
Deepika P, Sabharwal K N, Srinivasan T G, Vasudeva Rao P R . Solvent Extr. Ion Exch., 2010,28:184.
[29]
Ansari S A, Prabhu D R, Gujar R B, Kanekar A S, Rajeswari B, Kulkarni M J, Murali M S, Babu Y, Natarajan V, Rajeswar S, Suresh A, Manivannan R, Antony M P, Srinivasan T G, Manchanda V K . Sep. Purif. Technol., 2009,66:118.
[30]
Deepika P, Sabharwal K N, Srinivasan T G, Vasudeva Rao P R . Solvent Extr. Ion Exch., 2011,29:230.
[31]
丁颂东(Ding S D), 陈文浚(Chen W J), 肖成建(Xiao C J) . 核化学与放射化学 (Journal of Nuclear and Radiochemistry), 2003,25(3):188.
[32]
Sun G X, Liu M, Cui Y, Yuan M L, Yin S D . Solvent Extr. Ion Exch., 2010,28:482.
[33]
Ravi J, Suneesh A S, Prathibha T, Venkatesan K A, Antony M P, Srinivasan T G, Vasudeva Rao P R . Solvent Extr. Ion Exch., 2011,29:86.
[34]
Ravi J, Venkatesan K A, Antony M P, Srinivasan T G, Vasudeva Rao P R, J Radioanal . Nucl. Chem., 2012,295:1283.
[35]
Kirsch N, Funck R, Simon W . Quantitative Interpretation, 1978,61:2019.
[36]
Ammann D, Pretsch E, Simon W . Helv. Chim. Acta, 1973,56:1780.
[37]
Stephan H, Gloe K, Beger J, Mühl Pr . Solvent Extr. Ion Exch., 1991,9:435. http://www.tandfonline.com/doi/abs/10.1080/07366299108918063

doi: 10.1080/07366299108918063     URL    
[38]
Yao J, Wharf R M, Choppin G R . Separations of f Elements. Boston: Springer, 1995. 31.
[39]
Sasaki Y, Choppin G R . Anal. Sci., 1996,12:225.
[40]
Narita H, Yaita T, Tamara K, Tachimori S . Radiochim. Acta, 1998,8:223.
[41]
柳召刚(Liu S G) . 冶金译丛 (Metallurgical Translation), 1999(1):91.
[42]
Chan G Y, Drew M G, Hudson M J . J. Chem. Soc., 1997,4:649.
[43]
Tyumentsev M S, Foreman M R, Ekberg C . Hydrometallurgy, 2016,164:24.
[44]
Sasaki Y, Choppin G R . J. Radioanal. Nucl. Chem., 1996,2:383.
[45]
Sasaki Y, Choppin G R . Anal. Sci., 1996,2:225.
[46]
Mowafy E A, Aly H F . Solvent Extr. Ion Exch., 2007,25:205.
[47]
Ding S D, Wu Y X, Wang P F . Abstract of the Ninth National Symposium on Nuclear Chemistry and Radiochemistry(Ed. Ding Y Q). Beijing: China Nuclear Society, 2010. 9.
[48]
吴宇轩(Wu Y X), 丁颂东(Ding S D), 刘宁(Liu N), 黄松(Huang S), 黄璜(Huang H), 苏冬萍(Su D P), . 高等学校化学学报 (Chemical Journal of Chinese Universities), 2014,35(2):257.
[49]
杨玉兰(Yang Y L) , 济南大学硕士学位论文 (Master Dissertation of Jinan University), 2012.
[50]
刘敏(Liu M) . 济南大学硕士学位论文 (Master Dissertation of Jinan University), 2007.
[51]
Horwitz E P, Barrans R E, Bond A H . U.S. Patent 7157022, 2007.
[52]
陈文浚(Cheng W J), 祝霖(Zhu L) . 高等学校化学学报 (Chemical Journal of Chinese Universities), 1998,19(11):1724.
[53]
Thiollet G, Musikas C . Solvent Extr. Ion Exch., 1989,7:813.
[54]
Pretsch E, Ammann D, Osswald H F . Helv. Chim. Acta, 1980,63:191.
[55]
金永东(Jin Y D), 叶国安(Ye G A) . 化学研究与应用 (Chemical Research and Application), 2002,14(2):174.
[56]
胡玉芬(Hu Y F) . 济南大学硕士学位论文 (Master Dissertation of Jinan University), 2006.
[57]
Ravi J, Venkatesan K A, Antony M P, Srinivasan T G, Vasudeva Rao P R . J. Environ. Chem. Eng., 2013,1:690.
[58]
Ravi J, Prathibha T, Venkatesan K A, Antony M P, Srinivasan T G, Vasudeva Rao P R . Sep. Purif. Technol., 2012,85:96.
[59]
Ravi J, Venkatesan K, Antony M, Srinivasan T G, Vasudeva Rao P R . Radiochim. Acta, 2014,102:599.
[60]
Mowafy E A, Mohamed D . Sep. Sci. Technol., 2017,52:1006.
[61]
Tokheim B G . Doctoral Dissertation of Washington State University, 2016.
[62]
Sasaki Y, Tachimori S . Solvent Extr. Ion Exch., 2002,20:21.
[63]
吴广谱(Wu G P), 杨金红(Yang J H), 夏光明(Xia G M), 崔玉(Cui Y),孙国新(Sun G X) . 无机化学学报 (Journal of Inorganic Chemistry), 2011,27:315.
[64]
Xu Y, Gao Y, Zhou Y, Fan C C, Hou H G, Zhang M . Solvent Extr. Ion Exch., 2017,35:5078.
[65]
Arisaka M, Kimura T . Solvent Extr. Ion Exch., 2011,29:72.
[66]
Kou F, Yang S L, Zhang L, Teat S J, Tian G X . Inorg. Chem. Commun., 2016,71:41.
[67]
Kou F, Yang S L, Qian H, Zhang L, Beavers C M, Teat S J, Tian G X . Dalton Trans., 2016,45:18484. https://www.ncbi.nlm.nih.gov/pubmed/27603554

doi: 10.1039/c6dt02930b     URL     pmid: 27603554
[68]
Vasudeva Rao P R, Kolarik Z . Solvent Extr. Ion Exch., 1996,14:955.
[69]
Tachimori S, Sasaki Y, Suzuki S I . Solvent Extr. Ion Exch., 2007,20:687.
[70]
Sasaki Y, Zhu Z X, Sugo Y, Kimura T . J. Nucl. Sci. Technol., 2007,44:405. http://www.tandfonline.com/doi/abs/10.1080/18811248.2007.9711301

doi: 10.1080/18811248.2007.9711301     URL    
[71]
Liu Y Y, Gao Y, Wei Z, Zhou Y, Zhang M, Hou H G, Tian G X, He H . J. Radioanal. Nucl. Chem., 2018,318:2087.
[72]
Young C, Alfantazi A, Anderson C . Proceedings of the International Symposium on the Minerals, Metals and Materials,(Eds. Hager J P, Mishra B, Davidson C F, Litz J L). Warrendale: TMS(The Minerals, Metals and Materials Society). 2003. 56.
[73]
Chiarizia R, Jensen M P, Borkowski M, Ferraro J R, Thiyagarajan P, Littrell K C . Solvent Extr. Ion Exch., 2003,21:1.
[74]
Nave S, Modolo G, Madic C, Testard F . Solvent Extr. Ion Exch., 2004,22:527.
[75]
Jensen M P, Yaita T, Chiarizia R J L . Langmuir, 2007,23:4765. https://www.ncbi.nlm.nih.gov/pubmed/17391052

doi: 10.1021/la0631926     URL     pmid: 17391052
[76]
Carrott M, Maher C, Mason C, Sarsfield M, Taylor R . Sep. Sci. Technol., 2016,51:2198.
[77]
Ban Y, Suzuki H, Hotoku S, Kawasaki T, Sagawa H, Tsutsui N, Matsumura T . Solvent Extr. Ion Exch., 2019,37:27. https://www.tandfonline.com/doi/full/10.1080/07366299.2019.1586347

doi: 10.1080/07366299.2019.1586347     URL    
[78]
Xiao C L, Wang C Z, Yuan L Y, Li B, He H, Wang S A, Zhao Y L, Chai Z F, Shi W Q . Inorg. Chem., 2014,53:1712. https://www.ncbi.nlm.nih.gov/pubmed/24410744

doi: 10.1021/ic402784c     URL     pmid: 24410744
[79]
Xiao C L, Wu Q Y, Wang C Z, Zhao Y L, Chai Z F, Shi W Q . Inorg. Chem., 2014,53, 10846. https://www.ncbi.nlm.nih.gov/pubmed/25268674

doi: 10.1021/ic500816z     URL     pmid: 25268674
[80]
Zhang X R, Kong X K, Yuan L Y, Chai Z F, Shi W Q . Inorg. Chem., 2019,58:10239. https://www.ncbi.nlm.nih.gov/pubmed/31318539

doi: 10.1021/acs.inorgchem.9b01400     URL     pmid: 31318539
[81]
Zhang X R, Yuan L Y, Chai Z F, Shi W Q . Sci. China Chem., 2018,61:1285.
[82]
Ravi J, Venkatesan K A, Antony M P, Srinivasan T G, Vasudeva Rao P R . Solvent Extr. Ion Exch., 2014,32:424. http://www.tandfonline.com/doi/abs/10.1080/07366299.2013.866857

doi: 10.1080/07366299.2013.866857     URL    
[83]
Ravi J, Venkatesan K A, Antony M P, Srinivasan T G, Vasudeva Rao P R . Radiochim. Acta, 2014,102:599. f18f1db8-3f5a-402e-9c7d-65180d8bc153 http://dx.doi.org/10.1515/ract-2014-2183

doi: 10.1515/ract-2014-2183     URL    
[84]
Nayak P K, Kumaresan R, Chaurasia S . Radiochim. Acta, 2015,103:1.
[1] 李波, 马利建, 罗宁, 李首建, 陈云明, 张劲松. 固相萃取分离铀[J]. 化学进展, 2020, 32(9): 1316-1333.
[2] 刘育坚, 刘智敏, 许志刚, 李攻科. 搅拌棒吸附萃取技术[J]. 化学进展, 2020, 32(9): 1334-1343.
[3] 穆德颖, 刘铸, 金珊, 刘元龙, 田爽, 戴长松. 废旧锂离子电池正极材料及电解液的全过程回收及再利用[J]. 化学进展, 2020, 32(7): 950-965.
[4] 杨良嵘, 邢慧芳, 屈虹男, 于杰淼, 刘会洲. 外场强化环境响应固相萃取技术[J]. 化学进展, 2019, 31(11): 1615-1622.
[5] 殷立, 徐剑桥*, 黄周兵, 陈国胜, 郑娟, 欧阳钢锋*. 基于新型材料的固相微萃取探针的制备与应用[J]. 化学进展, 2017, 29(9): 1127-1141.
[6] 殷立, 徐剑桥*, 黄周兵, 陈国胜, 黄思铭, 欧阳钢锋*. 活体固相微萃取技术在动植物体内污染物分析中的应用[J]. 化学进展, 2017, 29(9): 1000-1007.
[7] 赵旭*, 张琦, 武海虹, 郝晓翠, 王亮, 黄西平. 盐湖卤水提锂[J]. 化学进展, 2017, 29(7): 796-808.
[8] 杨钰昆, 王小敏, 方国臻, 云雅光, 郭婷, 王硕. 基于分子印迹技术的电化学发光分析[J]. 化学进展, 2016, 28(9): 1351-1362.
[9] 韩强, 王宗花, 张晓琼, 丁明玉. 石墨烯及其复合材料在样品前处理中的应用[J]. 化学进展, 2014, 26(05): 820-833.
[10] 陈旭伟, 毛全兴, 王建华*. 离子液体在蛋白质萃取分离中的应用[J]. 化学进展, 2013, 25(05): 661-668.
[11] 盘登芳, 叶钢, 王芳, 陈靖* . 含氮杂环化合物萃取分离三价锕系与镧系元素[J]. 化学进展, 2012, 24(11): 2167-2176.
[12] 许志刚*, 刘智敏, 杨保民, 字富庭. 替代模板分子印迹技术在样品前处理中的应用[J]. 化学进展, 2012, 24(08): 1592-1598.
[13] 朱礼洋, 文明芬, 段五华, 徐景明, 朱永(贝睿). 超临界流体萃取技术在乏燃料后处理中的应用[J]. 化学进展, 2011, 23(7): 1308-1315.
[14] 陈靖, 王芳, 何喜红, 盘登芳. 二烃基二硫代膦酸萃取分离三价锕系与镧系元素研究[J]. 化学进展, 2011, 23(7): 1338-1344.
[15] 羊衍秋, 罗顺忠, 杨通在, 郝樊华. 杯芳烃衍生物萃取剂分离An(Ⅲ)/Ln(Ⅲ)[J]. 化学进展, 2011, 23(7): 1345-1354.
阅读次数
全文


摘要