English
新闻公告
More
化学进展 2018, Vol. 30 Issue (11): 1634-1645 DOI: 10.7536/PC180335 前一篇   后一篇

• 综述 •

聚酯酰胺的合成

高晗1, 徐军3, 胡欣2*, 朱宁1*, 郭凯1*   

  1. 1. 南京工业大学 生物与制药工程学院 材料化学工程国家重点实验室 南京 211800;
    2. 南京工业大学 材料科学与工程学院 南京 211800;
    3. 中国石油化工股份有限公司巴陵分公司 己内酰胺事业部 岳阳 414000
  • 收稿日期:2018-03-21 修回日期:2018-06-01 出版日期:2018-11-15 发布日期:2018-08-17
  • 通讯作者: 胡欣,e-mail:xinhu@njtech.edu.cn;朱宁,e-mail:ningzhu@njtech.edu.cn;郭凯,e-mail:guok@njtech.edu.cn E-mail:xinhu@njtech.edu.cn;ningzhu@njtech.edu.cn;guok@njtech.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.21878145,21504039,21522604,U1463201)和江苏省先进生物制造创新中心(No.XTD1823,XTD1821,XTB1802)资助

Synthesis of Poly(Ester Amide)

Han Gao1, Jun Xu3, Xin Hu2*, Ning Zhu1*, Kai Guo1*   

  1. 1. College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Material Chemistry Engineering, Nanjing Tech University, Nanjing 211800, China;
    2. College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211800, China;
    3. Caprolactam Division, SINOPEC Baling Company, Yueyang 414000, China
  • Received:2018-03-21 Revised:2018-06-01 Online:2018-11-15 Published:2018-08-17
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No. 21878145, 21504039, 21522604, U1463201) and the Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture(No. XTD1823, XTD1821, XTB1802).
聚(酯酰胺)(PEA)的主链中同时具有酯键和酰胺键,兼具了聚酯(polyester)的生物降解性和相容性以及聚酰胺(polyamide)优异的机械性能,在药物控释、组织工程以及热塑性弹性体等领域应用广泛。缩合聚合是合成聚酯酰胺最初的方法,近年来开环聚合(ROP)成为制备聚酯酰胺的主要策略,本文从环状单体均聚、环状单体共聚、环状单体和线形单体共聚等方面总结了聚酯酰胺合成的研究进展。同时,介绍了基于多组分聚合反应(MCP)的新合成方法,并对聚酯酰胺材料的发展进行了探讨和展望。
Poly(ester amide)(PEA) is a class of functional polymers with both amide and ester linkages in the polymer main chains. Due to the outstanding biodegradability, biocompatibility and mechanical property, PEA has broad applications in drug delivery, tissue engineering and thermoplastic elastomer. Polycondensation is the original synthetic method to PEA. Recently, remarkable achievements have been made in synthesis of PEA via ring-opening polymerization(ROP). This review summarizes the progress in ROP of cyclic monomers, ring-opening copolymerization(ROCP) of cyclic monomers and ROCP of cyclic/linear momomers. Moreover, multicomponent polymerization(MCP) is highlighted as a novel synthetic strategy to prepare PEA. The challenge and outlook of PEA are also discussed.
Contents
1 Introduction
2 Synthesis of poly(ester amide)s by ring-opening polymerization
2.1 Homo-polymerization of cyclic monomer
2.2 Co-polymerization of cyclic monomer
2.3 Co-Polymerization of cyclic monomer and linear monomer
3 Synthesis of poly(ester amide)s by multicomponent polymerization
4 Conclusion

中图分类号: 

()
[1] Winnacker M, Rieger B. Macromol. Rapid. Commun., 2016, 37:1391.
[2] Nie J, Liu X, Yan Y, Zhang H. J. Mater. Chem. C, 2017, 5:10391.
[3] Bednarek M. Prog. Polym. Sci., 2016, 58:27.
[4] Winnacker M, Rieger B. Polym. Chem., 2016, 7:7039.
[5] Natarajan J, Madras G, Chatterjee K. ACS Appl. Mater. Inter., 2017, 9:28281.
[6] Carothers W H, Dorough G L, Natta F J V. J. Am. Chem. Soc., 1932, 54:761.
[7] Dr P D. Angew. Chem. Int. Edit., 2004, 43:1078.
[8] Rizzarelli P, Cirica M, Pastorelli G, Puglisi C, Valenti G. Polym. Degrad. Stabil., 2015, 121:90.
[9] Ghosal K, Latha M S, Thomas S. Eur. Polym. J., 2014, 60:58.
[10] Bedoui F, Murthy N S, Kohn J. Macromolecules, 2017, 50.
[11] Fonseca A C, Gil M H, Simões P N. Prog. Polym. Sci., 2014, 39:1291.
[12] Rodríguez-Galán A, Franco L, Puiggali J. Biodegradable Poly(Ester Amide)s:Synthesis and Applications. 2nd ed. NY:Nova Science, 2011. 207.
[13] Sun H, Meng F, Dias A A, Hendriks M, Feijen J, Zhong Z. Biomacromolecules, 2011, 12:1937.
[14] Khan W, Muthupandian S, Farah S, Kumar N, Domb A J. Macromol. Biosci., 2011, 11:1625.
[15] Hu X, Zhu N, Fang Z, Guo K. React. Chem. Eng., 2017, 2:20.
[16] Höcker H, Keul H. Adv. Mater., 1994, 6:21.
[17] Okada M. Adv. Polym. Sci., 1992, 102:1.
[18] 汪羽翎(Wang Y L), 李武松(Li W S), 刘聪聪(Liu C C), 黄卫(Huang W), 颜德岳(Yan D Y), 康宏强(Kang H Q). 高分子学报(Acta polymerica Sinica), 2017, 1304.
[19] 周群华(Zhou Q H), 杨立群(Yang L Q), 张巍(Zhang W), 李淼(Li M). 中国组织工程研究(Journal of Clinical Rehabilitative Tissue Engineering Research), 2016, 20:4524.
[20] Nissen D, Gilon C, Goodman M. Macromol. Chem. Phys., 1975, 1:23.
[21] Peng X, Behl M, Zhang P, Mazurek-Budzyńska M, Razzaq M Y, Lendlein A. Polymer, 2016, 105:318.
[22] Chisholm M H, Galucci J, Krempner C, Wiggenhorn C. Dalton Trans., 2006, 6:846.
[23] RodriguezGalan, Alfonso, Franco, Lourdes, Puiggali, Jordi. Polymers, 2010, 3:65.
[24] Shoda S, Uyama H, Kadokawa J, Kimura S, Kobayashi S. Chem. Rev., 2016, 116:2307.
[25] Feng Y K, Knufermann J, Klee D, Hocker H. Macromol. Chem. Phys., 1999, 200:1506.
[26] Feng Y, Lu J, Behl M, Lendlein A. Macromol. Biosci., 2010, 10:1008.
[27] Feng Y, Klee D, Keul H, Höcker H. Macromol. Chem. Phys., 2000, 201:2670.
[28] Fey T, Keul H, Höcker H. Macromol. Chem. Phys., 2003, 204.
[29] Fey T, Keul H, Höcker H. Macromol. Symp., 2004, 215:307.
[30] Jakisch L, Böhme F, Komber H, Pompe G. Macromol. Rapid. Commun., 1999, 20:256.
[31] Feng Y, Lu W, Ren X, Liu W, Guo M, Ullah I, Zhang W. Polymers, 2016, 8:13.
[32] Ren X, Feng Y, Guo J, Wang H, Li Q, Yang J, Hao X, Lv J, Ma N, Li W. Chem. Soc. Rev., 2015, 44:5745.
[33] Hao X, Li Q, Lv J, Yu L, Ren X, Zhang L, Feng Y, Zhang W. ACS Appl. Mater. Inter., 2015, 7:12128.
[34] Rainbolt E A, Washington K E, Biewer M C, Stefan M C. Polym. Chem., 2015, 6:2369.
[35] Toncheva-Moncheva N, Jerome R, Mateva R. Polym. Degrad. Stabil., 2016, 123:170.
[36] Komoto H. Macromol. Chem., 1968, 115:33.
[37] Chromcová D, Baslerová L, Roda J, Brozek J. Eur. Polym. J., 2008, 44:1733.
[38] 刘继延(Liu J Y), 张黎明(Zhang L M). 化学进展(Progress in Chemistry), 2007, 19:350.
[39] 许茸(Xu R), 陈春霞(Chen C X). 化学进展(Progress in Chemistry), 2012, 24:1519.
[40] Sanchez-Sanchez A, Basterretxea A, Mantione D, Etxeberria A, Elizetxea C, de la Calle A, García-Arrieta S, Sardon H, Mecerreyes D. J. Polym. Sci. Part A:Polym. Chem., 2016, 54:2394.
[41] Michell R M, Müller A J, Castelletto V, Hamley I, Deshayes G l, Dubois P. Macromolecules, 2009, 42:6671.
[42] Deshayes G, Delcourt C, Verbruggen I, Trouillet-Fonti L, Touraud F, Fleury E, Degée P, Destarac M, Willem R, Dubois P. Eur. Polym. J., 2011, 47:98.
[43] Wang Y, Wei D, Zhang W. ChemCatChem, 2017, 10.
[44] Yang W, Wei D, Tang M. J. Org. Chem., 2017, 82:13043.
[45] Zhang G, Xu W, Liu J, Das D K, Yang S, Perveen S, Zhang H, Li X, Fang X. Chem. Commun., 2017, 53:13336.
[46] 郭凯(Guo K), 弓桦(Gong H), 朱宁(Zhu N), 胡欣(Hu X), 方正(Fang Z), 王海鑫(Wang H X), 曾文波(Zeng W B). ZL201610219405.3, 2016.
[47] Kredatusová J, Beneš H, Livi S, Pop-Georgievski O, Ecorchard P, Abbrent S, Pavlova E, Bogdal D. Polymer, 2016, 100:86.
[48] 于翠萍(Yu C P), 李希(Li X), 沈之荃(Shen Z Q). 化学进展(Progress in Chemistry), 2007, 19:136.
[49] Li X, Chen C, Wu J. Molecules, 2018, 23:189.
[50] Mezzasalma L, Dove A P, Coulembier O. Eur. Polym. J., 2017.
[51] Basterretxea A, Gabirondo E, Sanchez-Sanchez A, Etxeberria A, Coulembier O, Mecerreyes D, Sardon H. Eur. Polym. J., 2017, 95:650.
[52] Ottou W N, Sardon H, Mecerreyes D, Vignolle J, Taton D. Prog. Polym. Sci., 2016, 56:64.
[53] Fernández J, Etxeberria A, Sarasua J R. Polym. Degrad. Stabil., 2015, 112:104.
[54] Kronek J, Lustoň J, Kroneková Z, Paulovi Dcová E, Farkaš P, Petren Dcíková N, Paulovi Dcová L, Janigová I. J. Mater. Sci. Mater. M, 2010, 21:879.
[55] Li C G, Li S Q, Zhao J B, Zhang Z Y, Zhang J Y, Yang W T. Polym. Eng. Sci., 2015, 55:763.
[56] Kempe K. Macromol. Chem. Phys., 2017, 218:1700021.
[57] Culbertson B M. Prog. Polym. Sci., 2002, 27:579.
[58] (a)Sano Y, Arita K, Masuda I. US 4474942, 1984.; (b)Sano Y. J. Polym. Sci. Part A:Polym. Chem., 1989, 27:2749.
[59] Rao B S, Palanisamy A. Prog. Org. Coat., 2012, 74:427.
[60] Masuda I, Arita K, Sano Y. US4600766, 1986.
[61] Sano Y, Arita K, Masuda I, Hirono T, Nakamura Y. J. Netw. Polym. Jpn., 1986, 7:131.
[62] Néry L, Lefebvre H, Fradet A. Macromol. Chem. Phys., 2003, 204:1755.
[63] Seppälä J V, Helminen A O, Korhonen H. Macromol. Biosci., 2004, 4:208.
[64] Tarvainen T, Karjalainen T, Malin M, Peräkorpi K, Tuominen J, Seppälä J, Järvinen K. Eur. J. Pharm. Sci., 2002, 16:323.
[65] Rabnawaz M, Wyman I, Auras R, Cheng S. Green. Chem., 2017, 19.
[66] 李红微(Li H W), 陈梦羽(Chen M Y), 赵京波(Zhao J B), 杨万泰(Yang W T). 北京化工大学学报(自然科学版)(Journal of Beijing University of Chemical Technology(Nature Science Edition)), 2011, 38:89.
[67] Lustoň J, Kronek J, Janigová I. J. Macromol. Sci. A, 2010, 47:716.
[68] Lustoň J, Kronek J, Kleinová A, Janigová I, Valentová H, Nedbal J. J. Polym. Sci. Part A:Polym. Chem., 2012, 50:3936.
[69] Wilsens C H R M, Wullems N J M, Gubbels E, Yao Y, Rastogi S, Noordover B A J. Polym. Chem., 2015, 6:2707.
[70] Wilsens C H R M, Deshmukh Y S, Noordover B A J, Rastogi S. Macromolecules, 2014, 47:6196.
[71] Çakir S, Eriksson M, Martinelle M, Koning C E. Eur. Polym. J., 2016, 79:13.
[72] Bakkali-Hassani C, Tunc D, Roos K, Planes M, Lecomte P, Carlotti S. Macromolecules, 2016, 50:175.
[73] Qian Z, Li S, He Y, Li C, Liu X B. Polym. Degrad. Stabil., 2003, 81:279.
[74] He Y, Du Y R, Liu X B. Adv. Mater. Res., 2011, 287/290:1538.
[75] Solleder S C. Angew. Chem. Int. Edit., 2014, 53:711.
[76] Badi N. Chem. Soc. Rev., 2009, 38:3383.
[77] Ouchi M, Badi N, Lutz J F, Sawamoto M. Nat. Chem., 2011, 3:917.
[78] Robert C, De M F, Thomas C M. Nat. Commun., 2011, 2:586.
[79] Lutz J F. Macromol. Rapid. Commun., 2017, 38:1700582.
[80] Urnauer S, Morys S, Levacic A K, Müller A M, Schug C, Schmohl K A, Schwenk N, Zach C, Carlsen J, Bartenstein P. Mol. Ther., 2016, 24:1395.
[81] Li J, Stayshich R M, Meyer T Y. J. Am. Chem. Soc., 2011, 133:6910.
[82] Chen C L, Zuckermann R N, Deyoreo J J. ACS Nano, 2016, 10:5314.
[83] Passerini M. Gazz. Chim. Ital., 1921, 51:126.
[84] Deng X X, Li L, Li Z L, Lv A, Du F S, Li Z C. ACS Macro. Lett., 2012, 1:1300.
[85] Lv A, Deng X X, Li L, Li Z L, Wang Y Z, Du F S, Li Z C. Polym. Chem., 2013, 4:3659.
[86] Kan X W, Deng X X, Du F S, Li Z C. Macromol. Chem. Phys., 2014, 215:2221.
[87] Li L, Deng X X, Li Z L, Du F S, Li Z C. Macromolecules, 2014, 47:4660.
[88] Kim K S, Lee D, Song C G, Kang P M. Nanomedicine, 2015, 10:2709.
[89] Tapeinos C, Pandit A. Adv. Mater., 2016, 28:5553.
[90] Cui Y, Zhang M, Du F S, Li Z C. ACS Macro. Lett., 2016, 6:11.
[91] Kamaly N, Yameen B, Wu J, Farokhzad O C. Chem. Rev., 2016, 116:2602.
[92] Zhang Y, Yin Q, Yin L, Ma L, Tang L, Cheng P D J. Angew. Chem. Int. Edit., 2013, 125:6563.
[1] 秦国富, 刘一寰, 尹帆, 胡欣, 朱宁, 郭凯. 开环聚合接枝改性木质素[J]. 化学进展, 2020, 32(10): 1547-1556.
[2] 杜凡凡, 郑映, 单国荣, 包永忠, 介素云*, 潘鹏举*. 基于氢键作用的内酯开环聚合非金属有机催化剂[J]. 化学进展, 2018, 30(6): 710-718.
[3] 许茸, 陈春霞*. 有机小分子催化ε-己内酯开环聚合反应[J]. 化学进展, 2012, 24(08): 1519-1525.
[4] 李光, 白如科. 叠氮聚合物的合成[J]. 化学进展, 2011, 23(8): 1692-1699.
[5] 李启蒸, 张国艺, 袁聪, 魏柳荷, 马志. 聚烯烃/聚酯(聚醚)共聚物的合成及其应用[J]. 化学进展, 2011, 23(6): 1174-1180.
[6] 周莅霖 袁金颖 蔡志楠 洪啸吟. 活性开环聚合与可控自由基聚合机理转换合成精细结构共聚物*[J]. 化学进展, 2010, 22(09): 1799-1807.
[7] 蒋波 詹晓力 易玲敏 张晓东 许敏 孙立. 六甲基环三硅氧烷(D3)阴离子开环聚合机理与动力学研究[J]. 化学进展, 2010, 22(06): 1169-1176.
[8] 于翠萍,李希,牛俊峰,沈之荃. 三亚甲基环碳酸酯及2,2-二甲基三亚甲基环碳酸酯开环均聚合*[J]. 化学进展, 2007, 19(06): 959-972.
[9] 张治国,尹红. 环氧乙烷环氧丙烷开环聚合反应动力学研究*[J]. 化学进展, 2007, 19(04): 575-582.
[10] 刘继延,张黎明. 用于环酯单体开环聚合的无金属引发/催化体系*[J]. 化学进展, 2007, 19(0203): 350-355.
[11] 张治国,尹红. 环氧乙烷和环氧丙烷开环聚合*[J]. 化学进展, 2007, 19(01): 145-152.
[12] 于翠萍,李 ,希,沈之荃. 丙交酯开环均聚合*[J]. 化学进展, 2007, 19(01): 136-144.
[13] 陈涛,王立,王建军,江国华. 二茂铁基嵌段共聚物制备及自组装研究*[J]. 化学进展, 2004, 16(05): 797-.
[14] 王这杰,王立. 开环聚合制备高分子量聚二茂铁衍生物及其性能的研究*[J]. 化学进展, 2002, 14(06): 486-.
阅读次数
全文


摘要