English
新闻公告
More
化学进展 2018, Vol. 30 Issue (9): 1341-1348 DOI: 10.7536/PC180123 前一篇   后一篇

• 综述 •

基于多肽的纳米药物递送系统的研究

徐柳, 钱晨, 朱辰奇, 陈志鹏, 陈瑞*   

  1. 南京中医药大学药学院 南京 210023
  • 收稿日期:2018-01-24 修回日期:2018-03-08 出版日期:2018-09-15 发布日期:2018-05-16
  • 通讯作者: 陈瑞 E-mail:carol-chen-07@126.com
  • 基金资助:
    国家自然科学基金项目(No.81601598,81773662)、江苏省青年自然科学基金(No.BK20151001)、南京中医药大学青年自然科学基金项目(No.13XZR22)和江苏省研究生科研与实践创新项目(No.KYCX181580)资助

The Study of Peptides Nanomedicine for Drug Delivery Systems

Liu Xu, Chen Qian, Chenqi Zhu, Zhipeng Chen, Rui Chen*   

  1. College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
  • Received:2018-01-24 Revised:2018-03-08 Online:2018-09-15 Published:2018-05-16
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No. 81601598,81773662), the Jiangsu Province Young Natural Science Foundation (No.BK20151001), the Young Natural Science Foundation of Nanjing University of Chinese Medicine(No. 13XZR22), and the Research Innovation Program for Postgraduates of Jiangsu Province (No.KYCX181580)
构建纳米药物递送系统改善药物的理化性质和生物学性质已经成为现代药物设计研究的热点和重要方向。其中,多肽作为新兴的纳米药物的构筑基元具有良好生物相容性、自组装性与化学可变性等性质,激起了广泛的研究兴趣,为构建新型纳米递送系统提供了崭新的研究方向。本文阐述了自组装多肽在疏水作用、氢键、静电作用、π-π堆积等非共价作用力的综合作用下构建胶束、囊泡、球、纤维等不同形貌的纳米材料;进一步介绍了多肽药物结合物的基本概念以及高载药量、高生物利用度的优势,总结了近年来基于功能性多肽构建纳米药物递送系统的研究;重点介绍了近五年来报道的具有自组装性、增强溶解性、长效性、靶向性、刺激响应性、细胞跨膜性等多种功能的智能多肽纳米药物递送系统。
Nanomaterials for drug delivery have become a hot issue in the field of modern medicine since the successful improvement of the physicochemical and biological properties to drugs. Among them, peptides, as an emerging class of building block for nanomedicine, have attracted an extensive research interest due to their excellent properties such as good biocompatibility, easy self-assembly and chemical diversities, which point out a new direction for researchers to construct the novel and intelligent drug delivery systems. Herein, we report that the self-assembly peptides are driven by the integrated roles of noncovalent forces, including hydrophobic interaction, hydrogen bonding, electrostatic interaction and π-π stacking, to form a variety of well-defined nanostructures, such as micelles, vesicles, nanospheres, nanofibers, nanotube, disc and so on. Furtherly, the basic concept of peptide drug conjugates (PDCs) and their advantages of high drug loading, high bioavailability and specific targeting are introduced. The research in recent years on the construction of PDCs nanomedicine for drug delivery based on the functional peptide is summarized. We mainly focus on the most recent five-year report to construct the smart drug delivery system with the multifunction involved in self-assembly, enhancing solubility, long-term acting, targeting, stimulating response and cell transmembrane function.
Contents
1 Introduction
2 Self-assembling peptides
2.1 Classification of self-assembling peptides
2.2 The driving force of peptide assembly
3 Peptide drug conjugate for drug delivery system
3.1 Self-assembling peptide drug conjugates
3.2 Long-term acting peptide-drug conjugates
3.3 Targeting peptide drug conjugates
3.4 Responsive polypeptide drug conjugates
3.5 Transmembrane polypeptide drug conjugates
4 Conclusion

中图分类号: 

()
[1] Türeli N G, Türeli A E, Schneider M. Int. J. Pharm., 2016, 515(1/2):343.
[2] Atak B H, Buyuk B, Huysal M, Isik S, Senel M, Metzger W, Cetin G. Carbohydr. Polym., 2017, 164:200.
[3] Yao Q Q, Cosme J G, Xu T, Miszuk J M, Picciani P H, Fong H, Sun H L. Biomaterials, 2017, 115:115.
[4] Deodhar G V, Adams M L, Joardar S, Joglekar M, Davidson M, Mettler M, Toler S A, Davies F, Trewyn B G. Langmuir, 2017, 34(1):228.
[5] Wu W, Jiang C Z, Roy V A. Nanoscale, 2016, 8(47):19421.
[6] Ghadiri M R, Granja J R, Milligan R A, Mcree D E, Khazanovich N. Nat., 1993, 366(6453):324.
[7] Zhang S, Holmes T, Lockshin C, Rich A. Proc. Natl. Acad. Sci., 1993, 90(8):3334.
[8] Chen Z P, Xing L, Fan Q, Cheetham A G, Lin R, Holt B, Chen L W, Xiao Y Y, Cui H G. Theranostics, 2017, 7(7):2003.
[9] Smith D J, Brat G A, Medina S H, Tong D, Yong H, Grahammer J, Furtmüller G J, Oh B C, Nagysmith K J, Walczak P. Nat. Nanotechnol., 2016, 11(1):95.
[10] Dehsorkhi A, Castelletto V, Hamley I W. J. Pept. Sci., 2014, 20(7):453.
[11] Hu X X, He P P, Qi G B, Gao Y J, Lin Y X, Chao Y, Yang P P, Hao H, Lei W, Hao W. ACS Nano, 2017, 11(4):4086.
[12] Ardoña H A M, Tovar J D. Chem. Sci., 2015, 6(2):1474.
[13] Groot N S D, Parella T, Aviles F X, Vendrell J, Ventura S. Biophys. J., 2007, 92(5):1732.
[14] Mandal D, Nasrolahi S A, Parang K. Org. Biomol. Chem., 2014, 12(22):3544.
[15] Deshmukh S A, Solomon L A, Kamath G, Fry H C. Nat. Com., 2016, 7:12367.
[16] Yu T, Lee O S, Schatz G C. J. Phys. Chem. A, 2013, 117(32):7453.
[17] Grajda M, Lewińska M J, Szumna A. Org. Biomol. Chem., 2017, 15(40):8513.
[18] Hamley I W. Soft Matter, 2011, 7(20):9533.
[19] Aulisa L, Dong H, Hartgerink J D. Biomacromolecules, 2009, 10(9):2694.
[20] Trent A, Marullo R, Lin B, Black M, Tirrell M. Soft Matter, 2011, 7(20):9572.
[21] Zhu X M, Zou R F, Sun P, Wang Q, Wu J C. Polym. Chem., 2018, 9:69.
[22] Niece K L, Hartgerink J D, Donners J J, Stupp S I. J. Am. Chem. Soc., 2003, 125(24):7146.
[23] Ramachandran S, Tseng Y, Yu Y B. Biomacromolecules, 2005, 6(3):1316.
[24] Behanna H A, Donners J J, Gordon A C, Stupp S I. J. Am. Chem. Soc., 2005, 127(4):1193.
[25] Tsonchev S, And G C S, Ratner M A. J. Phys. Chem. B, 2015, 108(26):8817.
[26] Tao K, Levin A, Adler-Abramovich L, Gazit E. Chem. Soc. Rev., 2016, 45(14):3935.
[27] Bushuyev O S, Peterson G R, Brown P, Maiti A, Gee R H, Weeks B L, Hope-Weeks L J. Chemistry, 2013, 19(5):1706.
[28] Luo J H, Graslund A, Abrahams J P. J. Biol. Chem., 2017, 292(5):2046.
[29] Bowerman C J, Liyanage W, Federation A J, Nilsson B L. Biomacromolecules, 2011, 12(7):2735.
[30] Bertness K A, Sanders A W, Rourke D M, Harvey T E, Roshko A, Schlager J B, Sanford N A. Adv. Funct. Mater., 2010, 20(17):2911.
[31] Yin W, Cheetham A G, Angacian G, Hao S, Xie L S, Cui H G. Adv. Drug Delivery Rev., 2016,:110.
[32] Fung S Y, Yang H, Sadatmousavi P, Sheng Y, Mamo T, Nazarian R, Chen P. Adv. Funct. Mater., 2011, 21(13):2456.
[33] Webber M J, Newcomb C J, Bitton R, Stupp S I. Soft Matter, 2011, 7(20):9665.
[34] Wang Q R, Zhang X, Zheng J H, Liu D J. RSC Adv., 2014, 4(48):25461.
[35] Li J Y, Kuang Y, Gao Y, Du X, Shi J F, Xu B. J. Am. Chem. Soc., 2013, 135(2):542.
[36] Fatouros D, Lamprou D A, Urquhart A J, Yannopoulos S N, Vizirianakis I S, Zhang S, Koutsopoulos S. ACS Appl. Mater., 2014, 6(11):8184.
[37] Rodríguezvázquez N, Amorín M, Granja J R. Org. Biomol. Chem., 2017, 15(21):4490.
[38] Panda J J, Mishra A, Basu A, Chauhan V S. Biomacromolecules, 2008, 9(8):2244.
[39] Yan C Q, Pochan D J. Cheminform, 2010, 39(9):3528.
[40] Panda J J,Yandrapu S,Kadam R S,Chauhan V S,Kompella U B. J. Control Release, 2013, 172(3):1151.
[41] Jin H L, Zhao G F, Hu J L, Ren Q G, Yang K, Wan C, Huang A, Li P D, Feng J P, >ñ J W. ACS Appl. Mater., 2017, 9(31):25755.
[42] Castelletto V, Cheng G, Stain C, Connon C J, Hamley I W. Langmuir, 2012, 28(31):11599.
[43] Tajima A, Liu W, Pradhan I, Bertera S, Lakomy R, Rudert W A, Trucco M, Meng W S, Fan Y. J. Vis. Exp., 2016,6(112):54062.
[44] Mazza M, Notman R, Anwar J, Rodger A, Hicks M, Parkinson G, Mccarthy D, Daviter T, Moger J, Garrett N. ACS Nano, 2013, 7(2):1016.
[45] Lindsey S, Piatt J H, Worthington P, Sönmez C, Satheye S, Schneider J P, Pochan D J, Langhans S A. Biomacromolecules, 2015, 16(9):2672.
[46] Xu X D, Liang L, Chen C S, Lu B, Wang N L, Jiang F G, Zhang X Z, Zhuo R X. ACS Appl. Mater., 2010, 2(9):2663.
[47] Webber M J, Matson J B, Tamboli V K, Stupp S I. Biomaterials, 2012, 33(28):6823.
[48] Soukasene S, Toft D J, Moyer T J, Lu H, Lee H K, Standley S M, Cryns V L, Stupp S I. ACS Nano, 2011, 5(11):9113.
[49] Wang Q R, Zhang X, Zheng J H, Liu D J. RSC Adv., 2014, 4:25461.
[50] Li X M, Li J Y, Gao Y, Kuang Y, Shi J F, Xu B. J. Am. Chem.Soc., 2010, 132:17707.
[51] Wang M, Cheetham A G, Cui H G. Nano Today, 2016, 11(1):13.
[52] Lindgren M, Rosenthal-Aizman K, Saar K, Eiríksdóttir E, Jiang Y, Sassian M, Ostlund P, Hallbrink M, Langel U. Biochem. Pharmacol., 2006, 71(4):416.
[53] He X, Na M H, Kim J S, Lee G Y, Park J Y, Hoffman A S, Nam J O, Han S E, Sim G Y, Oh Y K. Mol. Pharmaceutics., 2011, 8(2):430.
[54] Yu-Yin L E, Huang L J, Jun-Yan H E. J. Chinese Oncology, 2017, 23(6):502.
[55] Meng S Y, Su B, Li W, Ding Y M, Tang L, Zhou W, Song Y, Li H Y, Zhou C C. Nanotechnology, 2010, 21(41):415103.
[56] Mayr J, Hager S, Koblmüller B, Klose M H M, Holste K, Fischer B, Pelivan K, Berger W, Heffeter P, Kowol C R. J. Biol. Inorg. Chem., 2017, 22(4):591.
[57] Khodadust F, Ahmadpour S, Aligholikhamseh N, Abedi S M, Hosseinimehr S J. Eur. J. Med. Chem., 2017, 144:767.
[58] Dobroff A S, Eckhardt B L, Salmeron C C, Cimino D F, Arap W, Pasqualini R. Cancer Res., 2015, 75(15 Supplement):3543.
[59] Mokhtarzadeh A, Parhiz H, Hashemi M, Ayatollahi S, Abnous K, Ramezani M. AAPS PharmSciTech., 2015, 16(5):1025.
[60] Yao H R, Veine D M, Livant D L. Breast Cancer Res. Treat., 2016, 157(3):1.
[61] Milosavljevic V, Krejcova L, Guran R, Buchtelova H, Wawrzak D, Richtera L, Heger Z, Kopel P, Adam V. Colloid Surface B, 2017, 156:123.
[62] Ghosh A, Raju N, Tweedle M, Kumar K. Cancer Biother Radiopharm, 2017, 32(1):24.
[63] Xiao W J, Chen X, Yang L, Mao Y Q, Wei Y Q, Chen L J. Int. J. Pharm., 2010, 393(1/2):120.
[64] Katanasaka Y, Ishii T, Asai T, Naitou H, Maeda N, Koizumi F, Miyagawa S, Ohashi N. Int. J. Cancer., 2010, 127(11):2685.
[65] Rivera-Fillat M P, Reig F, Martínez E M, Grau-Oliete M R. J. Pept. Sci., 2010, 16(7):315.
[66] He S, Cen B H, Liao L M, Wang Z, Qin Y X, Wu Z M, Liao W J, Zhang Z Y, Ji A M. Drug Deliv., 2017, 24(1):471.
[67] Nishimura Y, Takeda K, Ezawa R, Ishii J, Ogino C, Kondo A. J. Nanobiotechnology, 2014, 12(1):11.
[68] Zhu L, Wang T, Perche F, Taigind A, Torchilin V P. PNAS, 2013, 110(42):17047.
[69] Zhu L, Perche F, Wang T, Torchilin V P. Biomaterials, 2014, 35(13):4213.
[70] Tu Y, Lin Z. J. Control Release., 2015, 212:94.
[71] He B, Ma S Y, Peng G F, He D H. Nanomedicine, 2017, 14(2):365.
[72] Rizzuti M, Nizzardo M, Zanetta C, Ramirez A, Corti S. Drug Discov. Today, 2015, 20(1):76.
[73] Ablan F O, Spaller B L, Abdo K, Almeida P. Biophys J., 2016, 111(8):1738.
[74] Vasconcelos L, Madani F, Arukuusk P, Parnaste L, Graslund A, Langel U. Biochim Biophys Acta, 2014, 1838(12):3118.
[75] Bolhassani A, Jafarzade B S, Mardani G. Peptides, 2017, 87:50.
[76] Xue G Q, Liu Z, Wang L X, Zu L. J. Mass Spectrom., 2015, 50(1):220.
[77] Jones S, Howl J. Methods Mol Biol., 2011, 683(4):291.
[78] Duan Z Q, Chen C, Qin J, Liu Q, Wang Q, Xu X C, Wang J X. Drug Deliv., 2017, 24(1):752.
[1] 王新月, 金康. 多肽及蛋白质的化学合成研究[J]. 化学进展, 2023, 35(4): 526-542.
[2] 刘峻, 叶代勇. 抗病毒涂层[J]. 化学进展, 2023, 35(3): 496-508.
[3] 李良春, 郑仁林, 黄毅, 孙荣琴. 多组分自组装小分子水凝胶中的自分类组装[J]. 化学进展, 2023, 35(2): 274-286.
[4] 冯海弟, 赵璐, 白云峰, 冯锋. 纳米金属有机框架在肿瘤靶向治疗中的应用[J]. 化学进展, 2022, 34(8): 1863-1878.
[5] 王萌, 宋贺, 李烨文. 三维自组装蓝相液晶光子晶体[J]. 化学进展, 2022, 34(8): 1734-1747.
[6] 陆峰, 赵婷, 孙晓军, 范曲立, 黄维. 近红外二区发光稀土纳米材料的设计及生物成像应用[J]. 化学进展, 2022, 34(6): 1348-1358.
[7] 周晋, 陈鹏鹏. 二维纳米材料的改性及其环境污染物治理方面的应用[J]. 化学进展, 2022, 34(6): 1414-1430.
[8] 韩冬雪, 金雪, 苗碗根, 焦体峰, 段鹏飞. 超分子组装体激发态手性的响应性[J]. 化学进展, 2022, 34(6): 1252-1262.
[9] 尹航, 李智, 郭晓峰, 冯岸超, 张立群, 汤华燊. RAFT链转移剂的选用原则及通用型RAFT链转移剂[J]. 化学进展, 2022, 34(6): 1298-1307.
[10] 刘玉玲, 胡腾达, 李伊莲, 林洋, Borsali Redouane, 廖英杰. 嵌段共聚物薄膜快速自组装方法[J]. 化学进展, 2022, 34(3): 609-615.
[11] 钟琴, 周帅, 王翔美, 仲维, 丁晨迪, 傅佳骏. 介孔二氧化硅基智能递送体系的构建及其在各类疾病治疗中的应用[J]. 化学进展, 2022, 34(3): 696-716.
[12] 李红, 史晓丹, 李洁龄. 肽自组装水凝胶的制备及在生物医学中的应用[J]. 化学进展, 2022, 34(3): 568-579.
[13] 李彬, 于颖, 幸国香, 邢金峰, 刘万兴, 张天永. 手性无机纳米材料圆偏振发光的研究进展[J]. 化学进展, 2022, 34(11): 2340-2350.
[14] 郑明心, 谭臻至, 袁金颖. 光响应Janus粒子体系的构建与应用[J]. 化学进展, 2022, 34(11): 2476-2488.
[15] 漆晨阳, 涂晶. 无抗生素纳米抗菌剂:现状、挑战与展望[J]. 化学进展, 2022, 34(11): 2540-2560.