English
新闻公告
More
化学进展 2018, Vol. 30 Issue (5): 528-546 DOI: 10.7536/PC171249 前一篇   后一篇

• 综述 •

二碘化钐参与及二茂钛催化的氮α-位碳自由基偶联反应及其在含氮杂环合成中的应用

郑啸, 黄培强*   

  1. 厦门大学化学化工学院化学系 福建省化学生物学重点实验室 能源材料化学协同创新中心 厦门 361005
  • 收稿日期:2017-01-02 修回日期:2018-01-20 出版日期:2018-05-15 发布日期:2018-04-25
  • 通讯作者: 黄培强e-mail:pqhuang@xmu.edu.cn E-mail:pqhuang@xmu.edu.cn
  • 基金资助:
    国家重点研发计划(No.2017YFA0207302),国家自然科学基金项目(No.21472153,21672176,21332007,21172183,21472157,21672175)和教育部长江学者和创新团队发展计划资助

SmI2 and Titanocene-Mediated Coupling Reactions of α-Aminoalkyl Radicals and Applications to the Synthesis of Aza-Heterocycles

Xiao Zheng, Pei-Qiang Huang*   

  1. Department of Chemistry, Fujian Provincial Key Laboratory of Chemical Biology, iChEM(Collaborative Innovation Center of Chemistry for Energy Materials), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
  • Received:2017-01-02 Revised:2018-01-20 Online:2018-05-15 Published:2018-04-25
  • Supported by:
    The work was supported by the National Key R&D Program of China (No. 2017YFA0207302), the National Natural Science Foundation of China (No. 21472153, 21672176, 21332007, 21172183, 21472157, 21672175), and the Program for Changjiang Scholars and Innovative Research Team in University (PCSIRT) of the Ministry of Education, China.
氮α-位碳-碳键的构造是含氮有机化合物合成中的基本方法。通过氮α-位的碳正离子(亚胺鎓)、碳负离子和碳自由基中间体是实现这一目标的主要途径。相对而言,通过氮α-位碳自由基中间体构造碳-碳键可在较温和的中性条件下进行,且可实现对亚胺鎓离子的极性反转,因而是对正、负离子极性反应的重要补充。作为温和的单电子还原剂,Kagan试剂(二碘化钐)可还原多种含氮有机物产生氮α-位自由基,进而发生自由基偶联反应,在形成氮α-位碳-碳键的方法学发展中扮演了重要的角色。本文综述了二碘化钐参与的氮α-位自由基偶联反应在有机合成中的研究进展,重点归纳评述了二碘化钐参与的亚胺、硝酮、氮杂半缩醛、酰亚胺和酰胺等底物与醛/酮及与缺电子烯烃的自由基偶联反应,为了探讨、克服二碘化钐在相关反应中的局限性,也介绍了二茂钛催化的氮α-位碳自由基偶联反应的最新进展。此外,还重点评述了这些合成方法在含氮活性化合物、生物碱和中间体的简捷合成中的应用。
Carbon-carbon formation at N-α-carbon is an essential transformation in the synthesis of nitrogen-containing compounds. N-α-Carbocations (iminium ions), N-α-carbanions, and N-α-aminoalkyl radicals constitute three major classes of intermediates for this goal. The carbon-carbon forming reactions based on N-α-aminoalkyl radicals is advantageous over other two classes of intermediates for being able to run the reactions under mild neutral conditions. Moreover, because N-α-aminoalkyl radicals are umpolung of N-α-carbocations (iminium ions), the approaches based on these intermediates are complementary. In this regard, Kagan reagent (samarium diiodide, SmI2), a mild single-electron reductant, has emerged as a versatile reagent for the generation and coupling of N-α-aminoalkyl radicals. In this review, recent progresses on the carbon-carbon forming reactions at N-α-carbon via Kagan reagent is summarized. A number of nitrogen-containing substrates including imines, nitrones, hemiaminals, imides and amides have been shown to be valuable precursors to generate α-aminoalkyl radicals. The in situ coupling reactions of the latter with aldehydes/ketones, or electron-deficient alkenes lead to the formation of N-α-C—C bonds. These methods allow flexible access to diverse N-α-C functionalized compounds. To overcome some limitations of Kagan reagent, methods based on the titanocene-catalyzed generation of N-α-aminoalkyl radicals have also been developed. Many of these methods have been applied to the concise syntheses of medicinal-relevant compounds, alkaloids or key intermediates.
Contents
1 Introduction
2 SmI2-mediated radical coupling of imines
3 SmI2-mediated radical coupling of nitrones
3.1 Methodology research
3.2 Synthetic application
4 SmI2-mediated radical coupling of chiral N-tert-butanesulfinyl imines
4.1 Methodology research
4.2 Synthetic application
5 SmI2-mediated radical coupling of hemiaminal
5.1 Methodology research
5.2 Synthetic application
6 SmI2-mediated radical coupling of imides, amides and nitriles
6.1 Radical coupling of imides
6.2 Radical coupling of amides
6.3 Radical coupling of nitriles
7 An extension research:titanocene-catalyzed radical coupling reactions
8 Conclusion and outlook

中图分类号: 

()
[1] (a) Chen W, Zhang H B. Sci. China Chem., 2016, 59:1065;
(b) Gao S H, Qiu Y Y. Sci. China Chem., 2016, 59:1093;
(c) Tao P Y, Jia Y X. Sci. China Chem., 2016, 59:1109;
(d) Wang F X, Zhang P L, Wang H B, Zhang G B, Fan C A. Sci. China Chem., 2016, 59:1188;
(e) Li Y, Li J, Ding H F, Li, A. Natl. Sci. Rev., 2017, 4:397.
[2] (a) Speckamp W N, Moolenaar M J. Tetrahedron, 2000, 56:3817;
(b) Bur S K, Martin S F. Tetrahedron, 2001, 57:3221;
(c) Marson C M. Arkivoc, 2001, part 1.1;
(d) Maryanoff B E, Zhang H C, Cohen J H, Turchi I J, Maryanoff C A. Chem. Rev., 2004, 104:1431;
(e) Royer J. Chem. Rev., 2004, 104:2311;
(f) Yazici A, Pyne S G. Synthesis, 2009:339;
(g) Yazici A, Pyne S G. Synthesis, 2009:513.
[3] (a) Beak P, Basu A, Gallagher D J, Park Y S, Thayumanavan S. Acc. Chem. Res., 1996, 29:552;
(b) Gawley R E. Curr. Org. Chem., 1997, 1:71;
(c) Kessar S V, Singh P. Chem. Rev., 1997, 97:721;
(d) Katritzky A, Qi M. Tetrahedron, 1998, 54:2647;
(e) Husson H P, Royer J. Chem. Soc. Rev., 1999, 28:383.
[4] Huang P Q. Synlett, 2006:1133.
[5] (a) Renaud P, Giraud L. Synthesis, 1996:913;
(b) Hart D. In Radicals in Organic Synthesis. Weinheim, Germany:Wiley-VCH, 2001. 279;
(c) Aurrecoechea J M, Suero R. Arkivoc, 2004, part xiv:10;
(d) Nakajima K, Miyake Y, Nishibayashi Y. Acc. Chem. Res., 2016, 49:1946.
[6] (a) Molander G A. Chem. Rev., 1992, 92:29;
(b) Molander G A. Org. React., 1994, 46:211;
(c) Molander G A, Harris C R. Chem. Rev., 1996, 96:307;
(d) Krief A, Laval A M. Chem. Rev., 1999, 99:745;
(e) Kagan H B. Tetrahedron, 2003, 59:10351;
(f) Gopalaiah K, Kagan H B. New J. Chem., 2008, 32:607;
(g) Flowers R A Ⅱ. Synlett, 2008:1427;
(h) Procter D J, Flowers, R A Ⅱ, Skrydstrup T. Organic Synthesis using Samarium Diiodide. A Practical Guide. Cambridge:RSC Publishing, 2010;
(i) Beemelmanns C, Reissig H U. Chem. Soc. Rev., 2011, 40:2199;
(j) Szostak M, Spain M, Parmar D, Procter D J. Chem. Commun., 2012, 48:330;
(k) Szostak M, Spain M, Procter D J. Chem. Soc. Rev., 2013, 42:9155;
(l) Szostak M, Fazakerley N J, Parmar D, Procter D J. Chem. Rev., 2014, 114:5959.
[7] (a) Romero N A, Nicewicz D A. Chem. Rev., 2016, 116:10075;
(b) Yi H, Zhang G T, Wang H M, Huang Z Y, Wang J, Singh A K, Lei A W. Chem. Rev., 2017, 117:9016.
[8] Martin S F, Yang C P, Laswell W L, Rüeger H. Tetrahedron Lett., 1988, 29:6685.
[9] (a) Hanamoto T, Inanaga J. Tetrahedron Lett., 1991, 32:3555;
(b) Chiara, J L, Marco-Contelles J, Khiar N, Gallego P, Destabel C, Bernabe M. J. Org. Chem., 1995, 60:6010;
(c) Miyabe H, Torieda M, Inoue K, Tajiri K, Kiguchi T, Naito T. J. Org. Chem., 1998, 63:4397;
(d) Boiron A, Zillig P, Faber D, Giese B. J. Org. Chem., 1998, 63:5877;
(e) Storch de Garcia I, Bobo S, Martin-Ortega M D, Chiara J L. Org. Lett., 1999, 1:1705;
(f) Riber D, Hazell R, Skrydstrup T. J. Org. Chem., 2000, 65:5382;
(g) Nicolaou K C, Snyder S A, Giuseppone N, Huang X H, Bella M, Reddy M V, Rao P B, Koumbis A. E, Giannakakou P, O'Brate A. J. Am. Chem. Soc., 2004, 126:10174.
[10] (a) Sturino C F, Fallis A G. J. Am. Chem. Soc., 1994, 116:7447;
(b) Riber D, Hazell R, Skrydstrup T.J. Org. Chem., 2000, 65:5382;
(c) Chiara J. L, García Á. Synlett, 2005, 2607.
[11] Enholm E J, Forbes D C, Holub D P. Synth. Commun., 1990, 20:981.
[12] Machroui F, Namy J L. Tetrahedron, 1999, 40:1315.
[13] Tanaka Y, Taniguchi N, Kimura T, Uemura M. J. Org. Chem., 2002, 67:9227.
[14] Annunziata R, Benaglia M, Caporale M, Raimondi L. Tetrahedron:Asymmetry, 2002, 13:2727.
[15] Kim M, Knettle B W, DahlDeń A, Hilmersson G, Flowers R A Ⅱ. Tetrahedron, 2003, 59:10397.
[16] Kawaji T, Hayashi K, Hashimoto I, Matsumoto T, Thiemann T, Mataka S. Tetrahedron Lett., 2005, 46:5277.
[17] Matute R, Garcia-Vinuales S, Hayes H, Ghirardello M, Daru A, Tejero T, Delso I, Merino P. Curr. Org. Syn., 2016, 13:669.
[18] (a) Masson G, Py S, Vallée Y. Angew. Chem., Int. Ed., 2002, 41:1772;
(b) Masson G, Cividino P, Py S, Vallée Y. Angew. Chem. Int. Ed., 2003, 42:2265.
[19] (a) Chavarot M, Rivard M, Rose-Munch F, Rose E, Py S. Chem. Commun., 2004,20:2330;
(b) Chavarot-Kerlidou M, Rivard M, Chamiot B, Hahn F, Rose-Munch F, Rose E, Py S, Herson P. Eur. J. Org. Chem., 2010, 2010(5):944.
[20] Burchak O N, Philouze C, Chavant P Y, Py S. Org. Lett., 2008, 10:3021.
[21] Wu S F, Zheng X, Ruan Y P, Huang P Q. Org. Biomol. Chem., 2009, 7:2967.
[22] Wu S F, Ruan Y P, Zheng X, Huang P Q. Tetrahedron, 2010, 66:1653.
[23] Zhang H K, Xu S Q, Zhuang J J, Ye J L, Huang P Q. Tetrahedron, 2012, 68:6656.
[24] Riber D, Skrydstrup T. Org. Lett., 2003, 5:229.
[25] Johannesen S A, Albu S, Hazell R G, Skrydstrup T. Chem. Commun., 2004:1962.
[26] Cividino P, Py S, Delair P, Greene A. E. J. Org. Chem., 2007, 72:485.
[27] (a) Rehák J, Fisěra L, Podolan G, Kozíšek J, Perašínová L. Synlett, 2008:1260;
(b) Rehák J, Fisěra L, Kozíšek J, Perašínová L, Steiner B, Koóš M. Arkivoc, 2008, viii:18;
(c) Rehák J, Fisěra L, Prónayovaá N. Arkivoc, 2009, part vi:146;
(d) Rehaák J, Fisěra L, Kzíšek J, Bellovicová L. Tetrahedron, 2011, 67:5762.
[28] Xu C P, Huang P Q, Py S. Org. Lett., 2012, 14:2034.
[29] Zhong Y W, Xu M H, Lin G Q. Org. Lett., 2004, 6:3953.
[30] Ebran J P, Hazell R G, Skrydstrup T. Chem. Commun., 2005, 43:5402.
[31] Prikhod'ko A, Walter O, Zevaco T A, Garcia-Rodriguez J, Mouhtady O, Py S. Eur. J. Org. Chem., 2012:3742.
[32] Masson G, Philouze C, Py S. Org. Biomol. Chem., 2005, 3:2067.
[33] Zhang Z L, Nakagawa S, Kato A, Jia Y M, Hu X G, Yu C Y. Org. Biomol. Chem., 2011, 9:7713.
[34] Masson G, Zeghida W, Cividino P, Py S, Vallée Y. Synlett, 2003:1527.
[35] (a) Desvergnes S, Py S, Vallée Y. J. Org. Chem., 2005, 70:1459;
(b) Desvergnes S, Desvergnes V, Martin O R, Itoh K, Liu H W, Py S. Bioorg. Med. Chem., 2007, 15:6443;
(c) Gilles P, Py S. Org. Lett., 2012, 14:1042.
[36] Rehák J, Fisěra L, Kozíšek J, Bellovicová L. Tetrahedron, 2011, 67:5762.
[37] (a) Zhong Y W, Izumi K, Xu M H, Lin G Q. Org. Lett., 2004, 6:4747;
(b) Zhong Y W, Dong Y Z, Fang K, Izumi K, Xu M H, Lin G Q. J. Am. Chem. Soc., 2005, 127:11956;
(c) Lin G Q, Xu M H, Zhong Y W, Sun, X W. Acc. Chem. Res., 2008, 41:831.
[38] Peltier H M, McMahon J P, Patterson A W, Ellman J A. J. Am. Chem. Soc., 2006, 128:16018.
[39] Wang B, Wang Y J. Org. Lett., 2009, 1:3410.
[40] Lin X J, Bentley P A, Xie H X. Tetrahedron Lett., 2005, 46:7849.
[41] (a) Liu R C, Wei J H, Wei B G, Lin G Q. Tetrahedron:Asymmetry, 2008, 19:2731;
(b) Liu R H, Fang K, Wang B, Xu M H, Lin G Q. J. Org. Chem., 2008, 73:3307;
(c) Wang R, Fang K, Sun B F, Xu M H, Lin G Q. Synlett, 2009:2301.
[42] Wang B, Liu R H. Eur. J. Org. Chem., 2009:2845.
[43] Xarnod C, Huang W, Ren R G, Liu R C, Wei B G. Tetrahedron, 2012, 68:6688.
[44] (a) Rao C N, Lentz D, Reissig H U. Angew. Chem., Int. Ed., 2015, 54:2750;
(b) Beemelmanns C, Reissig H U. Chem. Rec., 2015, 15:872.
[45] (a) Aurrecoechea J M, Fernández-Acebes A. Tetrahedron Lett., 1992, 33:4763;
(b) Aurrecoechea J M, Fernández-Acebes A. Synlett, 1996:39.
[46] Wang X X, Liu Y J, Zhang Y M. Tetrahedron, 2003, 59:8257.
[47] Zheng X, Feng C G, Ye J L, Huang P Q. Org. Lett., 2005, 7:553.
[48] (a) Yoda H, Ujihara Y, Takabe K. Tetrahedron Lett., 2001, 42:9225;
(b) Yoda H, Kohata N, Takabe K. Synth. Commun., 2003, 33:1087.
[49] Xiang Y G, Wang X W, Zheng X, Ruan Y P, Huang P Q. Chem. Commun., 2009:7045.
[50] (a) Liu X K, Qiu S, Xiang Y G, Ruan Y P, Zheng X, Huang P Q. J. Org. Chem., 2011, 76:4952;
(b) Hu K Z, Ma J, Qiu S, Zheng X, Huang P Q. J. Org. Chem., 2013, 78:1790.
[51] Lin G J, Zheng X, Huang P Q. Chem. Commun., 2011, 47:1545.
[52] Shi S C, Lalancette R, Szostak M. Synthesis, 2016, 48:1825.
[53] Just-Baringo X, Procter D J. Acc. Chem. Res., 2015, 48:1263.
[54] Yoda H, Matsuda K, Nomura H, Takabe K. Tetrahedron Lett., 2000, 41:1775.
[55] Farcas S, Namy J L. Tetrahedron Lett., 2000, 41:7299.
[56] Jensen C M, Lindsay K B, Taaning R H, Karaffa J, Hansen A M, Skrydstrup T. J. Am. Chem. Soc., 2005, 127:6544.
[57] Hansen A M, Lindsay K B, Antharjanam P K S, Karaffa J, Daasbjerg K, Flowers R A Ⅱ, Skrydstrup T. J. Am. Chem. Soc., 2006, 128:9616.
[58] Vacas T, Álvarez E, Chiara J L. Org. Lett., 2007, 9:5445.
[59] Liu X K, Zheng X, Ruan Y P, Ma J, Huang P Q. Org. Biomol. Chem., 2012, 10:1275.
[60] Liu J, Ye C X, Wang A, Wang A E, Huang P Q. J. Org. Chem., 2015, 80:1034.
[61] Szostak M, Sautier B, Spain M, Behlendorf M, Procter D J. Angew. Chem., Int. Ed., 2013, 52:12559.
[62] Szostak M, Spain M, Parmar D, Procter D J. Chem. Commun., 2012, 48:330.
[63] (a) Huang H M, Procter D J. J. Am. Chem. Soc., 2016, 138:7770;
(b) Huang H M, Procter D J. J. Am. Chem. Soc., 2017, 139:1661;
(c) Huang H M, Bonilla P, Procter D J. Org. Biomol. Chem. 2017, 15:4159;
(d) Huang H M, Procter D J. Angew. Chem., Int. Ed., 2017, 56:14262.
[64] (a) Shi S C, Szostak M. Org. Lett., 2015, 17:5144;
(b) Just-Baringo X, Procter D J. Acc. Chem. Res., 2015, 48:1263;
(c) Shi S C, Lalancette R, Szostak R, Szostak M. Chem. Eur. J., 2016, 22:11949.
[65] McDonald C E, Galka A M, Green A I, Keane J M, Kowalchick J E, Micklitsch C M, Wisnoski D D. Tetrahedron Lett., 2001, 42:163.
[66] (a) Xiao K J, Wang A E, Huang Y H, Huang P Q. Asian J. Org. Chem., 2012, 1:130;
(b) Xiao K J, Huang Y H, Huang P Q. Acta Chim. Sin., 2012, 70:1917;
(c) Xiao K J, Wang A E, Huang P Q. Angew. Chem. Int. Ed., 2012, 51:8314.
[67] Huang P Q, Lang Q W, Wang A E, Zheng J F. Chem. Commun., 2015, 51:1096.
[68] Molander G A, Wolfe C N. J. Org. Chem., 1998, 63:9031.
[69] (a) Rao C N, Hoz S. J. Org. Chem., 2012, 77:4029;
(b) Rao C N, Hoz S. J. Org. Chem., 2012, 77:9199.
[70] Szostak M, Sautier B, Spain M, Procter D J. Org. Lett., 2014, 16:1092.
[71] (a) Gansäuer A, Bluhm H. Chem. Rev., 2000, 100, 2771;
(b) Zhuang Z Y, Zhang W H, Jia X S, Zhai H B. Chin. J. Org. Chem., 2006, 26:145;
(c) Morcillo S P, Miguel D, Campaña A G, de Cienfuegos L Á, Justicia J, Cuerva J M. Org. Chem. Front., 2014, 1:15;
(d) Streuff J, Gansäuer A. Angew. Chem., Int. Ed., 2015, 54:1.
[72] (a) Zheng X, Dai X J, Yuan H Q, Ye C X, Ma J, Huang P Q. Angew. Chem., Int. Ed., 2013, 52:3494;
(b) Zheng X, He J, Li H H, Wang A, Dai X J, Wang A E, Huang P Q. Angew. Chem., Int. Ed., 2015, 54:13739.
[73] (a) Nomura R, Matsuno T, Endo T. J. Am. Chem. Soc., 1996, 118:11666;
(b) Aspinall H C, Greeves N, Valla C. Org. Lett., 2005, 7:1919;
(c) Ueda T, Kanomata N, Machida H. Org. Lett., 2005, 7:2365;
(d) Han X Y, Xu F, Luo Y Q, Shen Q. Eur. J. Org. Chem., 2005:1500.
[1] 何静, 陈佳, 邱洪灯. 中药碳点的合成及其在生物成像和医学治疗方面的应用[J]. 化学进展, 2023, 35(5): 655-682.
[2] 龚智华, 胡莎, 金学平, 余磊, 朱园园, 古双喜. 磷酸酯类前药的合成方法与应用[J]. 化学进展, 2022, 34(9): 1972-1981.
[3] 宝利军, 危俊吾, 钱杨杨, 王雨佳, 宋文杰, 毕韵梅. 酶响应性线形-树枝状嵌段共聚物的合成、性能及应用[J]. 化学进展, 2022, 34(8): 1723-1733.
[4] 洪俊贤, 朱旬, 葛磊, 徐鸣川, 吕文珍, 陈润锋. CsPbX3(X = Cl, Br, I) 纳米晶的制备及其应用[J]. 化学进展, 2021, 33(8): 1362-1377.
[5] 王玉冰, 陈杰, 延卫, 崔建文. 共轭微孔聚合物的制备与应用[J]. 化学进展, 2021, 33(5): 838-854.
[6] 罗世鹏, 黄培强. 苹果酸——天然产物对映选择性全合成和合成方法学中多用途的手性合成砌块[J]. 化学进展, 2020, 32(11): 1846-1868.
[7] 刘德培, 田敬, 李静莎, 唐正, 王海燕, 唐有根. 锰铈二元氧化物的制备与应用[J]. 化学进展, 2019, 31(6): 811-830.
[8] 冯泽, 孙旦, 唐有根, 王海燕. 富镍三元层状氧化物LiNi0.8Co0.1Mn0.1O2正极材料[J]. 化学进展, 2019, 31(2/3): 442-454.
[9] 戴立信*. Ullmann反应百年纪念及近期复兴——兼及碳-杂原子键的形成[J]. 化学进展, 2018, 30(9): 1257-1297.
[10] 刘亚迪, 刘锋, 王诚, 赵波, 王建龙. 固体聚合物电解池析氧催化剂[J]. 化学进展, 2018, 30(9): 1434-1444.
[11] 王国强, 姜敏*, 张强, 王瑞, 曲小玲, 周光远*. 基于可再生资源含呋喃环聚酯[J]. 化学进展, 2018, 30(6): 719-736.
[12] 管杰, 孙玲娜, 徐琴*, 胡效亚*. 分子印迹型二氧化钛及其复合材料的合成和应用[J]. 化学进展, 2018, 30(11): 1749-1760.
[13] 陈茂龙, 尹帮少, 宋建新. 铃木偶联反应构筑卟啉阵列的研究进展[J]. 化学进展, 2015, 27(6): 641-654.
[14] 黄启同, 林小凤, 李飞明, 翁文, 林丽萍, 胡世荣. 碳量子点的合成与应用[J]. 化学进展, 2015, 27(11): 1604-1614.
[15] 刘小波, 寇宗魁, 木士春. 多孔石墨烯材料[J]. 化学进展, 2015, 27(11): 1566-1577.