English
新闻公告
More
化学进展 2017, Vol. 29 Issue (7): 796-808 DOI: 10.7536/PC170313 前一篇   

• 综述 •

盐湖卤水提锂

赵旭*, 张琦, 武海虹, 郝晓翠, 王亮, 黄西平   

  1. 国家海洋局天津海水淡化与综合利用研究所 天津 300192
  • 收稿日期:2017-03-09 修回日期:2017-05-26 出版日期:2017-07-15 发布日期:2017-06-22
  • 通讯作者: 赵旭 E-mail:zhaoxu_miller@126.com
  • 基金资助:
    国家自然科学基金项目(No.21506042)和中央级公益性科研院所基本科研业务费(No.K-JBYWF-2015-T06,K-JBYWF-2015-G11)资助

Extraction of Lithium from Salt Lake Brine

Xu Zhao*, Qi Zhang, Haihong Wu, Xiaocui Hao, Liang Wang, Xiping Huang   

  1. The Institute of Seawater Desalination and Multipurpose Utilization, State Oceanic Administration, Tianjin 300192, China
  • Received:2017-03-09 Revised:2017-05-26 Online:2017-07-15 Published:2017-06-22
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No.21506042) and the Fundamental Research Funds for the Central Public Welfare Scientific Institution (No.K-JBYWF-2015-T06,K-JBYWF-2015-G11).
随着新能源行业的迅速发展,锂因其独特的物化性质已被视为一种新的战略性能源,其需求量逐年递增,锂的提取分离技术也受到越来越多的关注。我国盐湖锂资源丰富,但因镁锂比高、分离难度大,目前尚未有效开发利用,开发适用于我国高镁锂比盐湖卤水的提锂分离技术,具有重要的研究价值和战略意义。本文综述了主要的盐湖提锂技术的研究现状,包括沉淀法、溶剂萃取法、离子筛吸附法、纳滤和电渗析技术等,探讨了各种技术方法的优势和特点,以及高镁锂比条件对分离效果的影响。近年来新兴的离子液体萃取剂和一价离子选择性交换膜电渗析技术也用于高镁锂比盐湖卤水提锂研究,这两种方法展现了良好的研究价值和应用前景,前者由于离子液体结构与功能的可设计性,具有开发高效提锂萃取剂的潜力,现有研究表明后者可以将初始镁锂比为150的模拟卤水降至8.0,锂回收率可达到95.3%。最后,对目前高镁锂比盐湖卤水提锂方法存在的问题和未来发展方向进行了总结与展望。
Lithium has been regarded as a new kind of strategic energy for its unique physicochemical property with the rapid development of the new energy industry. The demand for lithium increases every year and the lithium extraction and separation technology has attracted more and more interests. China is rich in lithium resource from salt lake brine, but it has not been exploited effectively due to the difficulty by high Mg/Li ratio. Thus, there are crucial research value and strategic significance to study the extraction of lithium from high Mg/Li ratio salt lake brine. In this review, the research status of popular lithium extraction technology from salt lake is summarized, including precipitation, solvent extraction, ion-sieve adsorption, nanofiltration and electrodialysis methods. The advantages and characteristics of the methods above are reviewed and the influence of high Mg/Li ratio on lithium separation is discussed. Moreover, the emerging solvent extraction using ionic liquid extractant and electrodialysis technology with monovalent selective permeability ion exchange membrane used to extract lithium from high Mg/Li ratio salt lake brine are introduced in detail. The two technologies exhibit great research significace and wide application prospects. The former has the potential to develop high effective lithium extractants due to the designability of ionic liquid structure and function. The current research shows that the latter could even reduce the Mg/Li mass ratio from 150 to 8.0 for the simulated brine, and simultaneously, the Li+ recovery reaches 95.3%. Finally, the existing problems and development directions of lithium extraction from high Mg/Li ratio salt lake brine in the future are discussed.
Contents
1 Introduction
2 Precipitation method
2.1 Carbonate
2.2 Aluminate
2.3 Aluminium salt
3 Solvent extraction method
3.1 β-Diketones
3.2 Crown ethers
3.3 Organophosphorus
3.4 Ionic liquids
4 Ion-sieve adsorption method
5 Nanofiltration and electrodialysis technology
6 Conclusion

中图分类号: 

()
[1] Garrett D E. Handbook of Lithium and Natural Calcium Chloride. Oxford:Academic Press, 2004. 180.
[2] Ebensperger A, Maxwell P, Moscoso C. Resources Policy, 2005, 30(3):218.
[3] 邓南平(Deng N P), 马晓敏(Ma X M), 阮艳莉(Ruan Y L), 王晓清(Wang X Q), 康卫民(Kang W M), 程博闻(Cheng B W). 化学进展(Progress in Chemistry), 2016, 28(9):1435.
[4] Jaskula B W. 2014 Minerals Yearbook:Lithium, U.S. Geological Survey. (2016-10).[2016-12-26]. https://minerals.usgs.gov/minerals/pubs/commodity/lithium/myb1-2014-lithi.pdf
[5] Jaskula B W. Mineral Commodity Summaries:Lithium, U.S. Geological Survey. (2017-01).[2017-03-08]. https://minerals.usgs.gov/minerals/pubs/commodity/lithium/mcs-2017-lithi.pdf
[6] An J W, Kang D J, Tran K T, Kim M J, Lim T, Tran T. Hydrometallurgy, 2012, 117/118(4):64.
[7] 高峰(Gao F), 郑绵平(Zheng M P), 乜贞(Nie Z), 刘建华(Liu J H), 宋彭生(Song P S). 地球学报(Acta Geoscientica Sinica), 2011, 32(04):483.
[8] 张宝全(Zhang B Q). 海湖盐与化工(Sea-Lake Salt & Chemical Industry), 2000, 29(4):9.
[9] 黄维农(Huang W N), 王学魁(Wang X K), 孙之南(Sun Z N), 乜贞(Nie Z), 沙作良(Sha Z L). 太阳能学报(Acta Energiae Solaris Sinica), 2010, 31(2):163.
[10] 赵元艺(Zhao Y Y), 郑绵平(Zheng M P), 卜令忠(Bu L Z), 乜贞(Nie Z), 刘喜方(Liu X F). 海湖盐与化工(Sea-Lake Salt & Chemical Industry), 2005, 34(2):1.
[11] 赵元艺(Zhao Y Y). 中国地质科学院博士后学位论文(Postdoctoral Dissertation of Chinese Academy of Geological Sciences), 2000.
[12] 罗莎莎(Luo S S). 中国地质科学院博士后学位论文(Postdoctoral Dissertation of Chinese Academy of Geological Sciences), 2003.
[13] Peiró L T, Méndez G V, Ayres R U. The Journal of the Minerals,Metals & Materials Society, 2013, 65(8):986.
[14] Donaldson A J, Boryta D A. US 9005557, 2015.
[15] Averill W A, Olson D L. Energy, 1978, 3(3):305.
[16] Boryta D A. US 4261960, 1981.
[17] 宋彭生(Song P S), 李武(Li W), 孙柏(Sun B), 乜贞(Nie Z), 卜令忠(Bu L Z), 王云生(Wang Y S). 无机化学学报(Chinese Journal of Inorganic Chemistry), 2011, 27(5):801.
[18] 何争珍(He Z Z). 成都理工大学硕士学位论文(Master Dissertation of Chengdu University of Technology), 2012.
[19] 肖小玲(Xiao X L). 中国科学院青海盐湖研究所硕士学位论文(Master Dissertation of Qinghai Institure of Salt Lakes, Chinese Academy of Sciences), 2005.
[20] Hamzaoui A H, Hammi H, M'Nif A. Russian Journal of Inorganic Chemistry, 2007, 52(12):1859.
[21] Healy T V. J. Inorg. Nucl. Chem., 1968, 30(4):1025.
[22] Healy T V. J. Inorg. Nucl. Chem., 1969, 31(2):499.
[23] Kim Y S, In G, Choi J M. Bull. Korean Chem. Soc., 2003, 24(10):181.
[24] Lee D A, Taylor W L, McDowell W J, Drury J S. J. Inorg. Nucl. Chem., 1968, 30(10):2807.
[25] Ishimori K, Imura H, Ohashi K. Anal. Chim. Acta, 2002, 454(2):241.
[26] Ishimori K, Imura H. Solvent Extr. Res. Dev., 2002, 9:13.
[27] Umetani S, Sasayama K, Matsui M. Anal. Chim. Acta, 1982, 134:327.
[28] Umetani S, Maeda K, Kihara S, Matsui M. Talanta, 1987, 34(9):779.
[29] Bukowsky H, Uhlemann E, Gloe K, Mühl P. Anal. Chim. Acta, 1992, 257(1):105.
[30] Mukai H, Miyazaki S, Umetani S, Kihara S, Matsui M. Anal. Chim. Acta, 1989, 220(1):111.
[31] Kunugita E, Kim J H, Komasawa I. Kagaku Kogaku Ronbunshu, 1989, 15(3):504.
[32] Kinugasa T, Nishibara H, Murao Y, Kawamura Y, Watanabe K, Takeuchi H. J. Chem. Eng. Jpn., 1994, 27(6):815.
[33] Pranolo Y, Zhu Z, Cheng C Y. Hydrometallurgy, 2015, 154:33.
[34] Harvianto G R, Kim S H, Ju C S. Rare Metals, 2016, 35(12):948.
[35] Pedersen C J. J. Am. Chem. Soc., 1967, 89(26):7017.
[36] Czech B P, Babb D A, Son B, Bartsch R A. J. Org. Chem., 1984, 25(49):4805.
[37] Bartsch R A, Goo M, Christian G D, Wen X, Czech B P, Chapoteau E, Kumar A. Anal. Chim. Acta, 1993, 272(2):285.
[38] Bartsch R A, Czech B P, Kang S I, Stewart L E, Walkowiak W, Charewicz W A, Heo G S, Son B. J. Am. Chem. Soc., 1985, 107(17):4997.
[39] Habata Y, Ikeda M, Akabori S. Tetrahedron Lett., 1992, 33(22):3157.
[40] Sakamoto H, Yokohata T, Yamamura T, Kimura K. Anal. Chem., 2002, 74(11):2522.
[41] Hano T, Matsumoto M, Ohtake T, Egashir N, Hori F. Solvent Extr. Ion Exch., 1992, 10(2):195.
[42] 张桂平(Zhang G P), 秦炜(Qin W), 谭元忠(Tan Y Z), 戴猷元(Dai Y Y). 清华大学学报自然科学版(J. Tsinghua Univ. Sci. Tech.), 2010, 50(3):430.
[43] Mantuano D P, Dorella G, Elias R C A, Mansur M B. J. Power Sources, 2006, 159(2):1510.
[44] Swain B, Jeong J, Lee J, Lee G. Sep. Purif. Technol., 2008, 63(2):360.
[45] Zhao J M, Shen X Y, Deng F L, Wang F C, Wu Y, Liu H Z. Sep. Purif. Technol., 2011, 78(3):345.
[46] Swain B, Jeong J, Lee J, Lee G. Hydrometallurgy, 2006, 84(3/4):130.
[47] Kang J G, Senanayake G, Sohn J, Shin S M. Hydrometallurgy, 2010, 100(3/4):168.
[48] Nelli J R, Arthur. T E. US 3537813, 1970.
[49] 黄师强(Huang S Q), 崔荣旦(Cui R D), 张淑珍(Zhang S Z), 毕道周(Bi D Z), 孙帮宽(Sun B K), 王国莲(Wang G L), 杜云清(Du Y Q), 李丽娟(Li L J). CN 87103431, 1987.
[50] 朱慎林(Zhu S L), 朴香兰(Piao X L), 缑泽明(Gou Z M). 清华大学学报自然科学版(J. Tsinghua Univ. Sci. Tech.), 2000, 40(10):47.
[51] Zhou Z Y, Qin W, Fei W Y. J. Chem. Eng. Data, 2011, 56(9):3518.
[52] Zhou Z Y, Qin W, Liu Y, Fei W Y. J. Chem. Eng. Data, 2012, 57(1):82.
[53] Zhou Z Y, Liang S K, Qin W, Fei W Y. Ind. Eng. Chem. Res., 2013, 52(23):7912.
[54] 杨立新(Yang L X), 邬赛祥(Wu S X), 刘肖丽(Liu X L), 何靖(He J), 陈文光(Chen W G). 高等学校化学学报(Chemical Journal of Chinese Universities), 2013, (01):55.
[55] 姬连敏(Ji L M), 李丽娟(Li L J), 时东(Shi D), 李晋峰(Li J F), 宋雪雪(Song X X), 聂锋(Nie F), 宋富根(Song F G), 曾忠民(Zeng Z M). CN 201410693066.3, 2014.
[56] Brennecke J F, Maginn E J. AlChE J., 2001, 47(11):2384.
[57] Zhao X, Yang Q W, Xu D, Bao Z B, Zhang Y, Su B G, Ren Q L, Xing H B. AIChE J., 2015, 61(6):2016.
[58] Huddleston J G, Willauer H D, Swatloski R P, Visser A E, Rogers R D. Chem. Commun., 1998, (16):1765.
[59] Yang Q W, Xing H B, Su B G, Yu K, Bao Z B, Yang Y W, Ren Q L. Chem. Eng. J., 2012, 181/182:334.
[60] Torrejos R E C, Nisola G M, Song H S, Han J W, Lawagon C P, Seo J G, Koo S, Kim H, Chung W. Hydrometallurgy, 2016, 164:362.
[61] 宋贤菊(Song X J), 王仕芳(Wang S F), 李在均(Li Z J). 稀有金属(Chinese Journal of Rare Metals), 2011, 35(3):434.
[62] Gao D L, Yu X P, Guo Y F, Wang S Q, Liu M M, Deng T L, Chen Y W, Belzile N. Chem. Res. Chin. Univ., 2015, 31(4):621.
[63] Gao D L, Guo Y F, Yu X P, Wang S Q, Deng T L. J. Chem. Eng. Jpn., 2016, 49(2):104.
[64] Shi C L, Jia Y Z, Zhang C, Liu H, Jing Y. Fusion Eng. Des., 2015, 90:1.
[65] Shi C L, Duan D P, Jia Y Z, Jing Y. J. Mol. Liq., 2014, 200:191.
[66] Shi C L, Jing Y, Jia Y Z. J. Mol. Liq., 2016, 215:640.
[67] Shi C L, Jing Y, Xiao J, Wang X Q, Yao Y, Jia Y Z. Sep. Purif. Technol., 2017, 172:473.
[68] Volkhin V V, Shulga E A, Zilberman M V. Izv.Akad.Nauk SSSR, Neorg. Mater., 1971, 7(1):77.
[69] Yang X J, Kanoh H, Tang W P, Ooi K. J. Mater. Chem., 2000, 10(8):1903.
[70] Chitrakar R, Kanoh H, Miyai Y, Ooi K. Chem. Mater., 2000, 12(10):3151.
[71] Zhang Q H, Li S P, Sun S Y, Yin X S, Yu J G. Chem. Eng. Sci., 2010, 65(1):169.
[72] Sun S Y, Song X F, Zhang Q H, Wang J, Yu J G. Adsorption, 2011, 17(5):881.
[73] Xiao J L, Sun S Y, Wang J, Li P, Yu J G. Ind. Eng. Chem. Res., 2013, 52(34):11967.
[74] Xiao J L, Nie X Y, Sun S Y, Song X F, Li P, Yu J G. Adv. Powder Technol., 2015, 26(2):589.
[75] 孙淑英(Sun S Y), 张钦辉(Zhang Q H), 于建国(Yu J G). 无机材料学报(Journal of Inorganic Materials), 2010, 25(6):626.
[76] Wang L, Meng C G, Ma W. Colloids Surf.A:Physicochem. Eng. Aspects, 2009, 334(1/3):34.
[77] He G, Zhang L Y, Zhou D L, Zou Y W, Wang F H. Ionics, 2015, 21(8):2219.
[78] Dong D Q, Wang W X, Wang M L. Appl. Mech. Mater., 2014, 618:175.
[79] Onodera Y, Iwasaki T, Hayashi H, Torii K. Chem. Ind., 1988, 786.
[80] Das J, Pobi M. Fresenius J. Anal. Chem., 1990, 336(7):578.
[81] Xu X, Chen Y M, Wan P Y, Gasem K, Wang K Y, He T, Adidharma H, Fan M H. Prog. Mater. Sci., 2016, 84:276.
[82] Chitrakar R, Makita Y, Ooi K, Sonoda A. Dalton Trans., 2014, 43:8933.
[83] Moazeni M, Hajipour H, Askari M, Nusheh M. Mater. Res. Bull., 2015, 61:70.
[84] Umeno A, Miyai Y, Takagi N, Chitrakar R, Sakane K, Ooi K. Ind. Eng. Chem. Res., 2002, 41(17):4281.
[85] Zhu G R, Wang P, Qi P F, Gao C J. Chem. Eng. J., 2014, 235:340.
[86] Chung K, Lee J, Kim W, Kim S B, Cho K Y. J. Membr. Sci., 2008, 325(2):503.
[87] Ma L W, Chen B Z, Chen Y, Shi X C. Micropor. Mesopor. Mater., 2011, 142(1):147.
[88] Xiao J L, Sun S Y, Song X F, Li P, Yu J G. Chem. Eng. J., 2015, 279:659.
[89] Bandini S, Vezzani D. Chem. Eng. Sci., 2003, 58(15):3303.
[90] Szymczyk A, Fievet P. J. Membr. Sci., 2005, 252(1/2):77.
[91] Wen X M, Ma P H, Zhu C L, He Q, Deng X C. Sep. Purif. Technol., 2006, 49(3):230.
[92] Yang G, Shi H, Liu W Q, Xing W H, Xu N P. Chin. J. Chem. Eng., 2011, 19(4):586.
[93] Somrani A, Hamzaoui A H, Pontie M. Desalination, 2013, 317:184.
[94] Sun S Y, Cai L J, Nie X Y, Song X F, Yu J G. J. Water Process Eng., 2015, 7:210.
[95] Nightingale E R. J. Phys. Chem., 1959, 63(9):1381.
[96] Ji Z Y, Chen Q B, Yuan J S, Liu J, Zhao Y Y, Feng W X. Sep. Purif. Technol., 2017, 172:168.
[97] Nie X Y, Sun S Y, Sun Z, Song X F, Yu J G. Desalination, 2017, 403:128.
[98] Moya A A. Phys. Chem. Chem. Phys., 2015, 17:5207.
[99] Nie X Y, Sun S Y, Song X F, Yu J G. J. Membr. Sci., 2017, 530(15):185.
[1] 李波, 马利建, 罗宁, 李首建, 陈云明, 张劲松. 固相萃取分离铀[J]. 化学进展, 2020, 32(9): 1316-1333.
[2] 刘育坚, 刘智敏, 许志刚, 李攻科. 搅拌棒吸附萃取技术[J]. 化学进展, 2020, 32(9): 1334-1343.
[3] 穆德颖, 刘铸, 金珊, 刘元龙, 田爽, 戴长松. 废旧锂离子电池正极材料及电解液的全过程回收及再利用[J]. 化学进展, 2020, 32(7): 950-965.
[4] 刘耀阳, 刘志斌, 赵闯, 周羽, 高杨, 何辉. 锕系元素分离研究:不对称双酰胺荚醚的萃取化学及应用[J]. 化学进展, 2020, 32(2/3): 219-229.
[5] 吴文浩, 雷文, 王丽琼, 王森, 张海军. 单原子催化剂合成方法[J]. 化学进展, 2020, 32(1): 23-32.
[6] 杨良嵘, 邢慧芳, 屈虹男, 于杰淼, 刘会洲. 外场强化环境响应固相萃取技术[J]. 化学进展, 2019, 31(11): 1615-1622.
[7] 赵凤阳, 姜永健, 刘涛, 叶纯纯. 纳滤膜新型材料研究[J]. 化学进展, 2018, 30(7): 1013-1027.
[8] 殷立, 徐剑桥*, 黄周兵, 陈国胜, 郑娟, 欧阳钢锋*. 基于新型材料的固相微萃取探针的制备与应用[J]. 化学进展, 2017, 29(9): 1127-1141.
[9] 殷立, 徐剑桥*, 黄周兵, 陈国胜, 黄思铭, 欧阳钢锋*. 活体固相微萃取技术在动植物体内污染物分析中的应用[J]. 化学进展, 2017, 29(9): 1000-1007.
[10] 杨钰昆, 王小敏, 方国臻, 云雅光, 郭婷, 王硕. 基于分子印迹技术的电化学发光分析[J]. 化学进展, 2016, 28(9): 1351-1362.
[11] 赵凤阳, 秘一芳, 安全福, 高从堦. 荷正电聚乙烯亚胺纳滤膜的制备与应用[J]. 化学进展, 2016, 28(4): 541-551.
[12] 董航, 张林, 陈欢林, 高从堦. 混合基质水处理膜:材料、制备与性能[J]. 化学进展, 2014, 26(12): 2007-2018.
[13] 韩强, 王宗花, 张晓琼, 丁明玉. 石墨烯及其复合材料在样品前处理中的应用[J]. 化学进展, 2014, 26(05): 820-833.
[14] 陈旭伟, 毛全兴, 王建华*. 离子液体在蛋白质萃取分离中的应用[J]. 化学进展, 2013, 25(05): 661-668.
[15] 盘登芳, 叶钢, 王芳, 陈靖* . 含氮杂环化合物萃取分离三价锕系与镧系元素[J]. 化学进展, 2012, 24(11): 2167-2176.
阅读次数
全文


摘要

盐湖卤水提锂