English
新闻公告
More
化学进展 2016, Vol. 28 Issue (4): 482-496 DOI: 10.7536/PC150941 前一篇   后一篇

• 综述与评论 •

咪唑二羧酸及其衍生物构筑配合物的研究进展

贾盈盈, 李洋, 周瑞莎, 宋江锋*   

  1. 中北大学理学院化学系 太原 030051
  • 收稿日期:2015-09-01 修回日期:2015-11-01 出版日期:2016-04-15 发布日期:2016-01-17
  • 通讯作者: 宋江锋 E-mail:jfsong0129@nuc.com
  • 基金资助:
    国家自然科学青年基金项目(No.21201155),山西省青年基金项目(No.2012021007-5, 2013021008-6),山西省优秀青年学术带头人支持项目,山西省"131"领军人才支持计划

The Advance of Imidazoledicarboxylate Derivatives-Based Coordination Polymers

Jia Yingying, Li Yang, Zhou Ruisha, Song Jiangfeng*   

  1. Department of Chemistry, North University of China, Taiyuan 030051, China
  • Received:2015-09-01 Revised:2015-11-01 Online:2016-04-15 Published:2016-01-17
  • Supported by:
    The work was supported by the National Natural Science Young Scholars Foundation of China(No.21201155), the Natural Science Young Scholars Foundation of Shanxi Province(No. 2012021007-5, 2013021008-6), the Program for the Top Young Academic Leaders of Higher Learning Institutions of Shanxi, and the 131 Talent Plan of Higher Learning Institutions of Shanxi.
咪唑二羧酸类有机配体由于具有多个配位点以及多种配位模式,在构筑配位聚合物方面得到了广泛的研究与应用.由该类配体构筑的配合物种类繁多,结构新颖,迄今已合成了上百种.本文详细概括了咪唑二羧酸类配体的特点、配位模式、配体种类以及相应的配合物,并从烷基取代和芳香基取代两方面综述了这些配合物的发展及其研究现状,同时简述了这类配体构筑的配合物在光学、气体吸附、磁性、催化以及介电方面的性能,最后对这类配体的发展前景进行了展望.
Imidazoledicarboxylate and its 2-position substituted derivatives as a kind of organic ligands with multiple coordination sites, strong coordination abilities and outstanding features of various coordination fashions have been extensively studied and applied in coordination chemistry. Up to now, hundreds of coordination complexes based on imidazoledicarboxylate and its 2-position substituted derivatives with novel topology structures as well as potential applications in numerous areas, have been reported by domestic and foreign researchers. The coordination modes are summarized in the review. The coordinate features, the types of imidazoledicarboxylate derivatives as well as the related coordination polymers, which are classified into two groups according to the different imidazoledicarboxylate 2-position substituted derivatives with alkyl and bulky aromatic groups. Moreover, the synthesis, crystal structures, potential applications such as fluorescence, gas adsorption, magnetic, catalytic and dielectric properties of corresponding polymers are also simply described. Finally, the research prospects of coordination polymers based on imidazoledicarboxylate derivatives are proposed.

Contents
1 Introduction
2 The features of imidazoledicarboxylate coordination
3 The research progress of complexes based on imidazoledicarboxylate
4 The research progress of complexes based on imidazoledicarboxylate derivatives
4.1 Imidazoledicarboxylate derivatives with alkyl groups
4.2 Imidazoledicarboxylate derivatives with aromatic groups
5 Properties
5.1 Fluorescence
5.2 Gas adsorption
5.3 Magnetism
5.4 Catalysis
5.5 Dielectric
6 Outlook

中图分类号: 

()
[1] Thallapally P K, Tian J, Kishan M R, Fernandez C A, Dalgarno S J, McGrail P B, Warren J E, Atwood J L. J. Am. Chem. Soc., 2008, 130(50): 16842.
[2] Lee J Y, Farha O K, Roberts J, Scheidt K A, Nguyen S T, Hupp J T. Chem. Soc. Rev., 2009, 38(5): 1450.
[3] Allendorf M D, Bauer C A, Bhakta R K, Houk R J T. Chem. Soc. Rev., 2009, 38(5): 1330.
[4] Kurmoo M. Chem. Soc. Rev., 2009, 38(5): 1353.
[5] Nagaraja C M, Behera J N, Maji T K, Pati S K, Rao C N R. Dalton Trans., 2010, 39(30): 6947.
[6] Gurunatha K L, Uemura K, Maji T K. Inorg. Chem., 2008, 47: 6578.
[7] Zhong R Q, Zou R Q, Du M, Takeichia N, Xu Q. Cryst. Eng. Comm., 2008, 10(9): 1175.
[8] Gu Z G, Liu Y T, Hong X J, Zhan Q G, Zheng Z P, Zheng S R, Li W S, Hu S J, Cai Y P. Cryst. Growth Des., 2012, 12(5): 2178.
[9] Starosta W, Leciejewicz J, Premkumar T, Govindarajan S. J. Coord. Chem., 2007, 60(3): 313.
[10] Ghosh A, Prabhakara R K, Sanguramath R A, Rao C N R. J. Mol. Struct., 2009, 927(1/3): 37.
[11] Zhang D J, Song T Y, Shi J, Ma K R, Wang Y, Wang L, Zhang P, Fan Y, Xu J N. Inorg. Chem. Commun., 2008, 11(2): 192.
[12] Liu Y L, Kravtsov V C, Larsen R, Eddaoudi M. Chem. Commun., 2006(14): 1488.
[13] Chandrasekhar V, Mohapatra C, Banerjee R, Mallick A. Inorg. Chem., 2013, 52(7): 3579.
[14] Sushrutha S R, Natarajan S. Cryst. Growth Des., 2013, 13(4): 1743.
[15] Fang R Q, Zhang X M. Inorg. Chem., 2006, 45: 4801.
[16] Fang R Q, Zhang X H, Zhang X M. Cryst. Growth Des., 2006, 6(12): 2637.
[17] Wang X L, Qin C, Wang E B, Xu L. J. Mol. Struct., 2005, 749(1/3): 45.
[18] Wang S, Zhang L R, Li G H, Huo Q S, Liu Y L. Cryst. Eng.Comm., 2008, 10(11): 1662.
[19] Mu B, Li Q, Lv L, Yang D D, Wang Q, Huang R D. J. Solid State Chem,, 2015, 226: 1.
[20] Liu W L, Ye L H, Liu X F, Yuan L M, Lu X L, Jiang J X. Inorg. Chem. Commun, 2008, 11(10): 1250.
[21] Gou L, Qin T, Hu H M, Chen X L, Wang B C, Wu Q R, Zhang B, Tang Z X. J. Coord. Chem,, 2008, 61(24): 3943.
[22] Lin J D, Cheng J W, Du S W. Cryst. Growth Des,, 2008, 8(9): 3345.
[23] Jayaramulu K, Reddy S K, Hazra A, Balasubramanian S, Maji T K. Inorg. Chem., 2012, 51(13): 7103.
[24] Lu W G, Jiang L, Feng X L, Lu T B. Cryst. Growth Des., 2008, 8(3): 986.
[25] Lu W G, Su C Y, Lu T B. Jiang L, Chen J M. J. Am. Chem. Soc., 2006, 128: 34.
[26] Lu WG, Jiang L, Feng X L, Lu T B. Cryst. Growth Des., 2006, 6(2): 564.
[27] Li J X, Du Z X, Wang L Z, Huang W P. Inorg. Chim. Acta, 2011, 376(1): 479.
[28] Chen J X, Liu B H. Inorg. Chem. Commun., 2012, 22: 170.
[29] Wang Y L, Yuan D Q, Bi W H, Li X, Li X J, Li F, Cao Rong. Cryst. Growth Des., 2005, 5(5): 1849.
[30] Li C J, Hu S, Li W, Lam C K, Zheng Y Z, Tong M L. Eur. J. Inorg. Chem., 2006, 2006(10): 1931.
[31] Wen L L, Wang D E, Chen Y J, Meng X G, Li D F, Lan S M. J. Coord. Chem., 2009, 62(5): 789.
[32] Wang C F, Gao E Q, He Z, Yan C H. Chem. Commun., 2004(6): 720.
[33] Lu W G, Gu J Z, Jiang L, Tan M Y, Lu T B. Cryst. Growth Des., 2008, 8(1): 192.
[34] Gu J Z, Gao Z Q, Dou W, Lu W G, Lu T B. Synth. React. Inorg. M., 2008, 38: 705.
[35] Gu J Z, Lu W G, Jiang L, Zhou H C, Lu T B. Inorg. Chem., 2007, 46: 5835.
[36] Zhang X F, Huang D G, Chen F, Chen C N, Liu Q T. Inorg. Chem. Commun., 2004, 7(5): 662.
[37] Gu J Z, Gao Z Q, Dou W, Lu W G, Lu T B. Synth. React. Inorg. M., 2009, 39: 87.
[38] Massoud S S, Gallo A A, Dartez M J, Gautreaux J G, Vicente R, Albering J H, Mautner F A. Inorg. Chem. Commun., 2014, 43: 35.
[39] Xu Q, Zou R Q, Zhong R Q, Chihiro K T, Satoshi T. Cryst. Growth Des., 2008, 8(7): 2458.
[40] Cheng A L, Liu N, Zhang J Y, Gao E Q. Inorg. Chem., 2007, 46: 1034.
[41] Zou R Q, Jiang L, Senoh H, Takeichia N, Xu Q. Chem. Commun., 2005(28): 3526.
[42] Zhao B, Zhao X Q, Shi W, Cheng P. J. Mol. Struct., 2007, 830(1/3): 143.
[43] Zhou R S, Song J F. Acta Crystallogr. Sect. E: Struct. Rep. Online, 2009, 65(Pt 12): m1523.
[44] Sun Y Q, Zhang J, Chen Y M, Yang G Yu. Angew. Chem. Int. Ed., 2005, 117(36): 5964.
[45] Lu W G, Zhong D C, Jiang L, Lu T B. Cryst. Growth Des., 2012, 12(7): 3675.
[46] Lu W G, Jiang L, Lu T B. Cryst. Growth Des., 2010, 10(10): 4310.
[47] Lu W G, Jiang L, Feng X L, Lu T B. Inorg. Chem., 2009, 48(15): 6997.
[48] Li S M, Zheng X J, Yuan D Q, Ablet A, Jin L P. Inorg. Chem., 2012, 12(3): 1201.
[49] Gu Z G, Fang H C, Yin P Y, Tong L, Ying Y, Hu S J, Li W S, Cai Y P. Cryst. Growth Des., 2011, 11(6): 2220.
[50] Gao Y C, Liu Q H, Zhang F W, Li G, Wang W Y, Lu H J. Polyhedron, 2011, 30(1): 1.
[51] Li Z F, Luo X B, Gao Y C, Lu H J, Li G. Inorg. Chim. Acta, 2012, 384: 352.
[52] Dang F F, Wang X W, Han G P, Yao Y H. Monatsh Chem., 2009, 140(6): 615.
[53] Li Z F, Guo L, Zhang F W, Li G, Zhu L. Synth. React. Inorg. M., 2010, 40: 734.
[54] Song J F, Li Y, Zhou R S, Shao J, Wang L, Cui X B. J. Coord. Chem., 2015, 68(20): 3651.
[55] Feng X, Ma L F, Liu L, Wang L Y, Song H L, Xie S Y. Cryst. Growth Des., 2013, 13(10): 4469.
[56] Song J F, Zhou R S, Hu T P, Chen Z, Wang B B. J. Coord. Chem., 2010, 63(24): 4201.
[57] Chen N, Zhang J, Gao Y C, Yang Z L, Lu H J, Li G. J. Coord. Chem, 2011, 64(14): 2554.
[58] Feng X, Zhou L L, Wang L Y, Zhou J G, Shi Z Q, Shang J J. Inorg. Chim. Acta, 2013, 394: 696.
[59] Zhang F W, Li Z F, Ge T Z, Yao H C, Li G, Lu H J, Zhu Y Y. Inorg. Chem., 2010, 49: 3776.
[60] Sun L, Song J F, Zhou R S, Zhang J, Wang L, Cui K L, Xu X Y. J. Coord. Chem., 2014, 67(5): 822.
[61] Wang S, Li G H, Huo Q S, Liu Y L. Inorg. Chem. Commun., 2013, 30: 115.
[62] Feng X, Wang J G, Liu B, Wang L Y, Zhao J S, Ng S. Cryst. Growth Des., 2012, 12(2): 927.
[63] Li Z F, Chen C J, Yan L H, Li G, Wu C J, Lu H J. Inorg. Chim. Acta, 2011, 377(1): 42.
[64] Deng J H, Zhong D C, Luo X Z, Liu H J, Lu T B. Cryst. Growth Des., 2012, 12(10): 4861.
[65] Fan R Q, Wang L Y, Chen H, Zhou G Peng, Yang Y L, Hasi W, Cao W W. Polyhedron, 2012, 33(1): 90.
[66] Deng J H, Zhong D C, Luo X Z, Wang K J, Mei G Q. Inorg. Chem. Commun., 2013, 36: 249.
[67] Deng J H, Zhong D C, Wang K J, Luo X Z, Lu W G. J. Mol. Struct., 2013, 1035: 94.
[68] Feng X, Zhao J S, Liu B, Wang L Y, Ng S, Zhang G, Wang J G, Shi X G, Liu Y Y. Cryst. Growth Des., 2010, 10(3): 1399.
[69] Li T T, Huang X, Guo J G, Cai S L, Zheng S R. Inorg. Chem. Commun., 2014, 48: 61.
[70] Zheng S R, Cai S L, Fan J, Xiao T T, Zhang W G. Inorg. Chem. Commun., 2011, 14(7): 1097.
[71] Cai S L, Zheng S R, Wen Z Z, Fan J, Zhang W G. Cryst. Growth Des., 2012, 12(7): 3575.
[72] Zheng S R, Cai S L, Pan M, Fan J, Xiao T T, Zhang W G. Cryst. Eng. Comm., 2011, 13(3): 883.
[73] Wang W Y, Yang Z L, Wang C J, Lu H J, Zang S Q, Li G. Cryst. Eng. Comm., 2011, 13(15): 4895.
[74] Zhang Y, Luo X B, Yang Z L, Li G. Cryst. Eng. Comm., 2012, 14(21): 7382.
[75] Wang W Y, Niu X L, Gao Y C, Zhu Y Y, Li G, Lu H J, Tang M S. Cryst. Growth Des., 2010, 10(9): 4050.
[76] Guo M W, Chen N, Yue Z F, Zhang Y, Li G. Cryst. Eng. Comm., 2012, 14: 4955.
[77] Guo B B, Li L, Yuan P F, Zhu Y Y, Li G. Inorg. Chem. Commun., 2013, 34: 27.
[78] Shi B B, Liu S F, Guo L, Li X Q, Li G. Polyhedron, 2014, 83: 77.
[79] Zhang Y, Yuan P F, Zhu Y Y, Li G. Dalton Trans., 2013, 42: 14776.
[80] Wang C J, Wang T, Li L, Guo B B, Zhang Y, Xiong Z F, Li G. Dalton Trans., 2013, 42(5): 1715.
[81] Jia H L, Li Y L, Xiong Z F, Wang C J, Li G. Dalton Trans., 2014, 43(9): 3704.
[82] Wang C J, Wang T, Zhang W, Lu H J, Li G. Cryst. Growth Des., 2012, 12(3): 1091.
[83] Shi B B, Zhong Y H, Guo L L, Li G. Dalton Trans., 2015, 44(9): 4362.
[84] Cao X J, Liu Y, Wang L Y, Li G. Inorg. Chim. Acta, 2012, 392: 16.
[85] Xiong Z F, Gao R M, Xie Z K, Guo B B, Li L, Zhu Y Y, Li G. Dalton Trans., 2013, 42(13): 4613.
[86] Xiong Z F, Shi B B, Li L, Zhu Y Y, Li L. Cryst. Eng. Comm, 2013, 15(24): 4885.
[87] Zhang Y, Guo B B, Li L, Liu S F, Li G. Cryst. Growth Des., 2013, 13(1): 367.
[88] Li L, Guo B B, Zhang J, Li G. Inorg. Chem. Commun., 2013, 36: 86.
[89] Jing X M, Zhang L R, Ma T L, Li G H, Yu Y, Huo Q S, Eddaoudi M, Liu Y L. Cryst. Growth Des., 2010, 10(2): 492.
[90] Li X, Wu B L, Niu C Y, Niu Y Y, Zhang H Y. Cryst. Growth Des., 2009, 9(8): 3423.
[91] Yuan G, Shao K Z, Du D Y, Wang X L, Su Z M, Ma J F. Cryst. Eng. Comm, 2012, 14(5): 1865.
[92] Zhou R S, Song J F, Li Y B, Xu C Y, Yang X F. Z. Anorg. Allg. Chem., 2011, 637: 251.
[93] Zhang S Q, Jiang F L, Wu M Y, Feng R, Ma J, Xu W T, Hong M C. Inorg. Chem. Commun., 2011, 14(9): 1400.
[94] Jing X M, Meng H, Li G H, Yu Y, Huo Q S, Eddaoudi M, Liu Y L. Cryst. Growth Des., 2010, 10(8): 3489.
[95] Chen L Z, Huang D D. Chin. Chem. Lett., 2014, 25(2): 279.
[96] Cai S L, Zheng S R, Wen Z Z, Fan J, Zhang W G. Cryst. Growth Des., 2012, 12(5): 2355.
[97] Dai C, Zhou X Y, Jing X M, Li G H, Huo Q S, Liu Y L. Inorg. Chem. Commun., 2015, 52: 69.
[98] Cai S L, Zheng S R, Wen Z Z, Fan J, Zhang W G. Cryst. Growth Des., 2012, 12(11): 5737.
[99] Cai S L, Zheng S R, Wen Z Z, Fan J, Wang N, Zhang W G. Cryst. Growth Des., 2012, 12(9): 4441.
[100] Yang R, Cai S L, Wen Z Z, Wen X L, Zheng S R. Inorg. Chem. Commun., 2014, 46: 98.
[101] Zheng S R, Wen Z Z, Chen Y Y, Cai S L, Fan J, Zhang W G. Inorg. Chem. Commun., 2015, 55: 165.
[102] Jing X M, Zhou X Y, Zhao T T, Huo Q S, Liu Y L. Cryst. Growth Des., 2012, 12(8): 4225.
[103] Guo B B, Li L, Wang Y, Zhu Y Y, Li G. Dalton Trans., 2013, 42(39): 14268.
[104] Xie L X, Hou X W, Fan Y T, Hou H W. Cryst. Growth Des., 2012, 12(3): 1282.
[105] Tan Y H, Wu J S, Yang C S, Liu Q R, Tang Y Z, Ye B H. Polyhedron, 2013, 57: 24.
[106] Cui P, Ma Y G, Li H H, Zhao B, Li J R, Cheng P, Balbuena P B, Zhou H C. J. Am. Chem. Soc., 2012, 134(46): 18892.
[107] Wang S, Zhao T T, Li G H, Wojtas L, Huo Q S, Eddaoudi M, Liu Y L. J. Am. Chem. Soc., 2010, 132: 18038.
[108] Liu Y L, Kravtsov V C, Eddaoudi M. Angew. Chem. Int. Ed. 2008, 47(44): 8446.
[109] Sava D F, Kravtsov V C, Eckert J, Eubank J F, Nouar F, Eddaoudi M. J. Am. Chem. Soc., 2009, 131: 10394.
[110] Al-Maythalony B A, Shekhah O, Swaidan R, Belmabkhout Y, Pinnau I, Eddaoudi M. J. Am. Chem. Soc., 2015, 137(5): 1754.
[111] Alkordi M H, Liu Y L, Larsen R W, Eubank J F, Eddaoudi M. J. Am. Chem. Soc., 2008, 130: 12639.
[112] Qu B T, Lai J C, Liu S, Liu F, Gao Y D, You X Z. Cryst. Growth Des., 2015, 15(4): 1707.
[1] 陈琳, 陈捷锋, 刘一任, 刘玉玉, 凌海峰, 解令海. 有机张力半导体及其光电特性[J]. 化学进展, 2022, 34(8): 1772-1783.
[2] 靳钧, 林梓恒, 石磊. 一维新型碳的同素异形体:碳链[J]. 化学进展, 2021, 33(2): 188-198.
[3] 赵苏艳, 刘畅, 徐浩, 杨晓博. 二维共价有机框架光催化剂[J]. 化学进展, 2020, 32(2/3): 274-285.
[4] 曹小卫, 陈帅, 鲍敏, 史宏灿, 李巍. 金纳米星的制备、表面修饰及其在生物医学领域的应用研究[J]. 化学进展, 2018, 30(9): 1380-1391.
[5] 刘禹杉, 李伟, 吴鹏, 刘守新*. 水热炭化制备碳量子点及其应用[J]. 化学进展, 2018, 30(4): 349-364.
[6] 常增花, 王建涛, 武兆辉, 赵金玲, 卢世刚. 高浓度锂盐电解液[J]. 化学进展, 2018, 30(12): 1960-1974.
[7] 饶丹丹, 孙波, 乔俊莲, 关小红. 三价锰的性质、产生及环境意义[J]. 化学进展, 2017, 29(9): 1142-1153.
[8] 王宏磊, 吕文珍, 唐星星, 陈铃峰, 陈润锋, 黄维. 二维钙钛矿材料及其在光电器件中的应用[J]. 化学进展, 2017, 29(8): 859-869.
[9] 刘康, 高冠斌*, 孙涛垒*. β-HgS量子点的制备、性质及应用[J]. 化学进展, 2017, 29(7): 776-784.
[10] 朱永明, 姜云鹏, 胡会利*. 纳米NCS在电化学能量转换和储存中的制备和应用[J]. 化学进展, 2017, 29(11): 1422-1434.
[11] 韩冬琳, 亓洪昭, 赵瑾, 龙丽霞, 任玉, 原续波. 增强纳米药物载体肿瘤内渗透分布的研究进展[J]. 化学进展, 2016, 28(9): 1397-1405.
[12] 琚成功, 张宝, 冯亚青. 有机卤化铅钙钛矿太阳能电池[J]. 化学进展, 2016, 28(2/3): 219-231.
[13] 卢金荣, 巨勇. 基于三萜骨架的超分子凝胶体系[J]. 化学进展, 2016, 28(2/3): 260-268.
[14] 沈艳芳, 徐畅, 黄敏, 王海燕, 程龙玖. 硼团簇、硼烷及金属硼化物的研究现状[J]. 化学进展, 2016, 28(11): 1601-1614.
[15] 吴艳姣, 李伟, 吴琼, 刘守新. 水热炭的制备、性质及应用[J]. 化学进展, 2016, 28(1): 121-130.