English
新闻公告
More
化学进展 2016, Vol. 28 Issue (2/3): 184-192 DOI: 10.7536/PC150625 前一篇   后一篇

• 综述与评论 •

金属配位在多肽与蛋白质研究中的应用

马晓川, 费浩*   

  1. 中国科学院苏州纳米技术与纳米仿生研究所 苏州 215123
  • 收稿日期:2015-06-01 修回日期:2015-09-01 出版日期:2016-03-15 发布日期:2016-01-07
  • 通讯作者: 费浩 E-mail:hfei2008@sinano.ac.cn
  • 基金资助:
    国家自然科学基金项目(No.81573339,31170777)资助

The Use of Metal Coordination in Peptide and Protein Research

Ma Xiaochuan, Fei Hao*   

  1. Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
  • Received:2015-06-01 Revised:2015-09-01 Online:2016-03-15 Published:2016-01-07
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No.81573339, 31170777).
金属元素常见于天然蛋白质分子中,并扮演着不可或缺的重要角色。对金属与氨基酸的配位方式的不断深入理解,有助于人工设计新型的金属-多肽配位模式,并在多肽结构功能优化、分子组装、标记与成像以及药物设计等领域获得更广泛的研究和应用。本文首先简要介绍蛋白质中的不同基团与金属离子之间的配位模式以及具体的研究案例,进而介绍了金属配位在多肽分子的二级结构调控、超分子结构组装、多肽及蛋白质的荧(磷)光标记、蛋白质折叠方式分析等基础研究中的应用。最后,对上述研究领域为金属-多肽类分子探针或药物的设计优化所提供的发展潜力进行展望。
Metal ions are commonly seen in naturally occurring protein molecules, and often play pivotal roles in protein function. Deepening understanding of basic coordination models between amino acids and various metals facilitates artificial designs of novel peptide-metal coordination modalities that can be broadly applied in research fields such as peptide structure-function optimization, molecular assembly, labeling and imaging, and peptide therapeutics development. This minireview introduces the basic coordination chemistry between electron-donating groups on peptides (namely carboxylate, amine, imidazole, sulfhydryl groups) and their respective favorable metal ions with illustrated examples. We next discuss in detail the use of metal or metalloid coordination in fundamental research of peptides and proteins, including secondary structure constraining, supermolecular assembly, fluorescence or phosphorescence labeling, and protein folding analysis. In particular, we highlight two examples of luminogenic peptide/protein labeling techniques, the first being the broadly applied biarsenical ligand and tetracysteine motif based protein probing method, and the second being the recently reported iridium(Ⅲ) complex and histidine motif based peptide labeling technique. Finally we discuss the principles in the development of metallo-peptide molecular probes and the potential brought by this research for optimization in drug designs.

Contents
1 Introduction
2 Common binding groups in peptides for metal coordination
2.1 Carboxyl group
2.2 Amine group and imidazole group
2.3 Sulfhydryl group
3 The effects of metal coordination on peptide/protein structure
3.1 Folding and stabilization
3.2 Supermolecular assembly
4 Coordination-based peptide luminescent labeling and biological applications
5 Outlook

中图分类号: 

()
[1] Dokmanic I, Sikic M, Tomic S. Acta Crystallogr., 2008, 64:257.
[2] Gamble A J, Peacock A F A. Methods in Molecular Biology, 2014, 1216:211.
[3] Carafoli E, Klee C B. Calcium As A Cellular Regulator, Oxford University Press, 1999.
[4] Yumoto F, Nara M, Kagi H, Iwasaki, W, Ojima T, Nishita K, Nagata K, Tanokura M. Eur. J. Biochem., 2001, 268:6284.
[5] Babu A, Su H, Ryu Y, Gulati J. J. Biol. Chem., 1992, 267:15469.
[6] Medici S. Dalton Trans., 2012, 41:4378.
[7] Schmidbaur H, Classen H G, Helbig J. Angew. Chem. Int. Ed., 1990, 29:1090.
[8] Chang X, Jorgensen A M M, Bardrum P, Led J J. Biochemistry (Mosc), 1997, 36:9409.
[9] Paule S G, Nikolovski B, Ludeman J, Gray R E, Spiccia L, Zimmet P Z, Myers M A. Peptides, 2009, 30:1088.
[10] Paule S G, Nikolovski B, Gray R E, Ludeman J P, Freemantle A, Spark R A, Kerr J B, Ng F M, Zimmet P Z, Myers M A. Peptides, 2009, 30:955.
[11] Miura T, Suzuki K, Kohata N, Takeuchi H. Biochemistry (Mosc), 2000, 39:7024.
[12] Curtain C C, Ali F, Volitakis I, Cherny R A, Norton R S, Beyreuther K, Barrow C J, Masters C L, Bush A I, Barnham K J. J. Biol. Chem., 2001, 276:20466.
[13] Syme C D, Nadal R C, Rigby S E J, Viles J H. J. Biol. Chem., 2004, 279:18169.
[14] Ma M T, Hoang H N, Scully C C G, Appleton T G, Fairlie D P. J. Am. Chem. Soc., 2009, 131:4505.
[15] Ghadiri M R, Fernholz A K. J. Am. Chem. Soc., 1990, 112:9633.
[16] Laity J H, Lee B M, Wright P E. Curr. Opin. Struct. Biol., 2001, 11:39.
[17] Andreini C, Banci L, Bertini I, Rosato A J. Proteome Res., 2005, 5:196.
[18] Stillman M J. Coord. Chem. Rev., 1995, 144:461.
[19] Neupane K P, Pecoraro V L. Angew. Chem. Int. Ed., 2010, 122:8353.
[20] Peacock A F A, Pecoraro V L. Metal Ions in Life Sciences, 2013, 11(11):303.
[21] Peacock A F, Iranzo O, Pecoraro V L. Dalton Trans., 2009, 13:2271.
[22] Pecoraro V L, Peacock A F A, Iranzo O, ?uczkowski M. Bioinorganic Chemistry:Cellular Systems and Synthetic Models, 2009, 1012:183.
[23] Kulon K, Wo Dz' niak D, Wegner K, Grzonka Z, Koz?owski H J. Inorg. Biochem., 2007, 101:1699.
[24] Fosgerau K, Hoffmann T. Drug Discovery Today, 2015, 20(1):122.
[25] Dharanipragada R. Future Med. Chem., 2013, 5:831.
[26] Gavenonis J, Sheneman B A, Siegert T R, Eshelman M R, Kritzer J. A. Nat. Chem. Biol., 2014, 10:716.
[27] Ruoslahti E. Annu. Rev. Cell Dev. Biol., 1996, 12:697.
[28] Williams E. J. Biol. Chem., 2000, 275:4007.
[29] Giblin M F, Wang N, Hoffman T J, Jurisson S S, Quinn T P. Proc. Natl. Acad. Sci. U. S. A., 1998, 95:12814.
[30] Chen J, Cheng Z, Owen N K, Hoffman T J, Miao Y, Jurisson S S, Quinn T P. J. Nucl. Med., 2001, 42:1847.
[31] Hsiung H M. Endocrinology, 2005, 146:5257.
[32] Xu S, Li H, Shao X, Fan C, Ericksen B, Liu J, Chi C, Wang C. J. Med. Chem., 2012, 55:6881.
[33] Ma X C, Jia J J, Cao R, Wang X B, Fei H. J. Am. Chem. Soc., 2014, 136:17734.
[34] Ghadiri M R, Fernholz A K. J. Am. Chem. Soc., 1990, 112:9633.
[35] Cline D J, Thorpe C, Schneider J P. J. Am. Chem. Soc., 2003, 125:2923.
[36] Ramadan D, Cline D J, Bai S, Thorpe C, Schneider J P. J. Am. Chem. Soc., 2007, 129:2981.
[37] Tian Z Q, Bartlett P A. J. Am. Chem. Soc., 1996, 118:943.
[38] Sontz P A, Song W J, Tezcan F A. Curr. Opin. Chem. Biol., 2014, 19:42.
[39] Dong J, Shokes J E, Scott R A, Lynn D G. J. Am. Chem. Soc., 2006, 128:3540.
[40] Knerr P J, Branco M C, Nagarkar R, Pochan D J, Schneider J P. J. Mater. Chem., 2011, 22:1352.
[41] Dai Q, Dong M, Liu Z, Prorok M, Castellino F J. J. Inorg. Biochem., 2011, 105:52.
[42] Kohn W D, Kay C M, Sykes B D, Hodges R S. J. Am. Chem. Soc., 1998, 120:1124.
[43] Adams S R, Griffin B A, Tsien RY. Science, 1998, 281:269.
[44] Gaietta G, Deerinck T J, Adams S R, Bouwer J, Tour O, Laird D W, Sosinsky G E, Tsien R Y, Ellisman M H. Science, 2002, 296:503.
[45] Luedtke N W, Dexter R J, Fried D B, Schepartz A. Nat. Chem. Biol., 2007, 3:779.
[46] Griffin B A, Adams S R, Tsien R Y. Methods Mol. Biol., 2015, 1266.
[47] Rutkowska A, Haering C H, Schultz C. Angew. Chem. Int. Ed., 2011, 50:12655.
[48] Irtegun S, Wood R, Lackovic K, Schweiggert J, Ramdzan Y M, Huang D C, Mulhern T D, Hatters D M. ACS Chem. Biol., 2014, 9(7):1426.
[49] Yang Y, Zhang C Y. Anal. Chem., 2014, 86:967.
[50] Fessenden J D, Mahalingam M. PLoS One, 2013, 8(5):e64686.
[51] Varlamov O. Methods Mol. Biol., 2014, 1174:49.
[52] Lelek M 1, Di Nunzio F, Zimmer C. Methods Mol. Biol., 2014, 1174:183.
[53] Zhao Q, Huang C, Li F. Chem. Soc. Rev., 2011, 40(5):2508.
[54] Lo K K. Luminescent and Photoactive Transition Metal Complexes as Biomolecular Probes and Cellular Reagents. Berlin:Springer, 2015.
[55] Zhou M, Fei H, Liu Y, Li W F. Prog. Chem., 2010, 22(01):201.
[56] Wang X B, Jia J J, Huang Z Z, Zhou M, Fei H. Chem. Eur. J., 2011, 17:8028.
[1] 王新月, 金康. 多肽及蛋白质的化学合成研究[J]. 化学进展, 2023, 35(4): 526-542.
[2] 于兰, 薛沛然, 李欢欢, 陶冶, 陈润锋, 黄维. 圆偏振发光性质的热活化延迟荧光材料及电致发光器件[J]. 化学进展, 2022, 34(9): 1996-2011.
[3] 赖燕琴, 谢振达, 付曼琳, 陈暄, 周戚, 胡金锋. 基于1,8-萘酰亚胺的多分析物荧光探针的构建和应用[J]. 化学进展, 2022, 34(9): 2024-2034.
[4] 李立清, 郑明豪, 江丹丹, 曹舒心, 刘昆明, 刘晋彪. 基于邻苯二胺氧化反应的生物分子比色/荧光探针[J]. 化学进展, 2022, 34(8): 1815-1830.
[5] 周宇航, 丁莎, 夏勇, 刘跃军. 荧光探针在半胱氨酸检测的应用[J]. 化学进展, 2022, 34(8): 1831-1862.
[6] 颜范勇, 臧悦言, 章宇扬, 李想, 王瑞杰, 卢贞彤. 检测谷胱甘肽的荧光探针[J]. 化学进展, 2022, 34(5): 1136-1152.
[7] 赵惠, 胡文博, 范曲立. 双光子荧光探针在生物传感中的应用[J]. 化学进展, 2022, 34(4): 815-823.
[8] 田浩, 李子木, 汪长征, 许萍, 徐守芳. 分子印迹荧光传感构建及应用[J]. 化学进展, 2022, 34(3): 593-608.
[9] 张婷婷, 洪兴枝, 高慧, 任颖, 贾建峰, 武海顺. 基于铜金属有机配合物的热活化延迟荧光材料[J]. 化学进展, 2022, 34(2): 411-433.
[10] 李彬, 于颖, 幸国香, 邢金峰, 刘万兴, 张天永. 手性无机纳米材料圆偏振发光的研究进展[J]. 化学进展, 2022, 34(11): 2340-2350.
[11] 张业文, 杨青青, 周策峰, 李平, 陈润锋. 热激活延迟荧光材料的光物理行为及性能预测[J]. 化学进展, 2022, 34(10): 2146-2158.
[12] 王振, 李曦, 栗园园, 王其, 卢晓梅, 范曲立. 可激活的NIR-Ⅱ探针用于肿瘤成像[J]. 化学进展, 2022, 34(1): 198-206.
[13] 赵丹, 王昌涛, 苏磊, 张学记. 荧光纳米材料在病原微生物检测中的应用[J]. 化学进展, 2021, 33(9): 1482-1495.
[14] 李斌, 付艳艳, 程建功. 检测有机磷神经毒剂及模拟物的荧光探针[J]. 化学进展, 2021, 33(9): 1461-1472.
[15] 王学川, 王岩松, 韩庆鑫, 孙晓龙. 有机小分子荧光探针对甲醛的识别及其应用[J]. 化学进展, 2021, 33(9): 1496-1510.