English
新闻公告
More
化学进展 2015, Vol. 27 Issue (11): 1566-1577 DOI: 10.7536/PC150508 前一篇   后一篇

• 综述与评论 •

多孔石墨烯材料

刘小波, 寇宗魁, 木士春*   

  1. 武汉理工大学材料复合新技术国家重点实验室 武汉 430070
  • 收稿日期:2015-05-01 修回日期:2015-08-01 出版日期:2015-11-15 发布日期:2015-09-18
  • 通讯作者: 木士春 E-mail:msc@whut.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.51372186)、国家重点基础研究发展计划(973)项目(No.2012CB215504)和湖北省自然基金重点项目(No.2013CFA082)资助

Porous Graphene Materials

Liu Xiaobo, Kou Zongkui, Mu Shichun*   

  1. State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
  • Received:2015-05-01 Revised:2015-08-01 Online:2015-11-15 Published:2015-09-18
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No.51372186),the Basic Research Development Program of China(973 Program)(No.2012CB215504), and the Natural Science Foundation of Hubei Province of China(No.2013CFA082).
多孔石墨烯是指在二维基面上具有纳米级孔隙的碳材料,是近年来石墨烯缺陷功能化的研究热点。多孔石墨烯不仅保留了石墨烯优良的性质,而且相比惰性的石墨烯表面,孔的存在促进了物质运输效率的提高,特别是原子级别的孔可以起到筛分不同尺寸的离子、分子的作用。更重要的是,孔的引入还有效地打开了石墨烯的能带隙,促进了石墨烯在电子器件领域的应用。本文阐述了多孔石墨烯的一些基本性质和特性,并对其理论研究、制备方法和应用的研究进展进行了评述。其中,多孔石墨烯的制备方法主要包括光刻法、催化刻蚀法、化学气相沉积法、湿法刻蚀、碳热还原法、溶剂热法和自由基攻击法。多孔石墨烯优异的特性使其在能源储存与转换材料(锂离子电池、超级电容器、燃料电池等)、DNA分子检测、化学传感器、场效应晶体管、分子筛和海水淡化等领域具有非常广阔的应用前景。
Porous graphene, which refers to graphene containing nanopores in the two-dimensional basal plane, has aroused great interest. Porous graphene not only retains the excellent intrinsic prosperities of original graphene, but also opens up an energy gap to generate a semiconducting carbon film. The existing nanopores can improve mass transfer efficiency when compared to inactive surface of graphene, thus the porous graphene has more widespread application perspective. Here, the aspects of theoretical base, synthesis methods and applications of porous graphene are reviewed. The synthesis methods mainly include lithography, catalytic etching, chemical vapor deposition, wet etching, carbothermal reduction, solvothermal synthesis and free radical attack. Meanwhile, the application of porous graphene predominantly focuses on fields of energy storage and conversion materials(e.g., fuel cells, supercapacitors, and lithium ion batteries), field effect transistors, chemical sensors, water desalination, molecular sieves and DNA sequencing.

Contents
1 Introduction
2 Theoretical base and properties of porous graphene
3 Synthesis of porous graphene
3.1 Lithography techniques
3.2 Catalytic etching methods
3.3 Chemical vapor deposition method
3.4 Wet etching
3.5 Carbothermal reduction method
3.6 Solvothermal synthesis
3.7 Free radical attack method
3.8 Other methods
4 Applications
4.1 Fuel cell materials
4.2 Supercapacitors electrode materials
4.3 Lithium ion battery electrode materials
4.4 Field effect transistors
4.5 Chemical sensors
4.6 Water desalination
4.7 Molecular sieve
4.8 DNA sequencing
5 Existing problems
6 Conclusion and perspectives

中图分类号: 

()
[1] Novoselov K S, Geim A K, Morozov S, Jiang D, Zhang Y, Dubonos S, Grigorieva I, Firsov A. Science, 2004, 306:666.
[2] Novoselov K, Geim A K, Morozov S, Jiang D, Katsnelson M, Grigorieva I, Dubonos S, Firsov A. Nature, 2005, 438:197.
[3] Berger C, Song Z, Li X, Wu X, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov A N. Science, 2006, 312:1191.
[4] Nair R, Blake P, Grigorenko A, Novoselov K, Booth T, Stauber T, Peres N, Geim A. Science, 2008, 320:1308.
[5] Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau C N. Nano Lett., 2008, 8:902.
[6] Lee C, Wei X, Kysar J W, Hone J. Science, 2008, 321:385.
[7] Li H, Cheng N, Zheng Y, Zhang X, L H, He D, Pan M, Kleitz F, Qiao S Z, Mu S. Adv. Energy. Mater., 2013, 3:1176.
[8] Du X, Skachko I, Barker A, Andrei E Y. Nat. Nanotechnol., 2008, 3:491.
[9] Zhang Y, Tan Y W, Stormer H L, Kim P. Nature, 2005, 438:201.
[10] Katsnelson M, Novoselov K, Geim A. Nature Phys., 2006, 2:620.
[11] Kane C L, Mele E J. Phys. Rev. Lett., 2005, 95:226801.
[12] Castro E V, Novoselov K, Morozov S, Peres N, Dos Santos J L, Nilsson J, Guinea F, Geim A, Neto A C. Phys. Rev. Lett., 2007, 99:216802.
[13] Zhang Y, Tang T T, Girit C, Hao Z, Martin M C, Zettl A, Crommie M F, Shen Y R, Wang F. Nature, 2009, 459:820.
[14] Son Y W, Cohen M L, Louie S G. Phys. Rev. Lett., 2006, 97:216803.
[15] Han M Y, Özyilmaz B, Zhang Y, Kim P. Phys. Rev. Lett., 2007, 98:206805.
[16] Wei D, Liu Y, Wang Y, Zhang H, Huang L, Yu G. Nano Lett., 2009, 9:1752.
[17] Qu L, Liu Y, Baek J B, Dai L. ACS Nano, 2010, 4:1321.
[18] Ohta T, Bostwick A, Seyller T, Horn K, Rotenberg E. Science, 2006, 313:951.
[19] 陈旭(Chen X), 何大平(He D P), 木士春(Mu S C).化学进展(Progress in Chemistry), 2013, 25:1292.
[20] Yazyev O V, Helm L. Phy. Rev. B, 2007, 75:125408.
[21] Lucchese M M, Stavale F, Ferreira E M, Vilani C, Moutinho M, Capaz R B, Achete C, Jorio A. Carbon, 2010, 48:1592.
[22] Bai J, Zhong X, Jiang S, Huang Y, Duan X. Nat. Nanotechnol., 2010, 5:190.
[23] Xu P, Yang J, Wang K, Zhou Z, Shen P. Chinese. Sci. Bull., 2012, 57:2948.
[24] Blankenburg S, Bieri M, Fasel R, Mullen K, Pignedoli C A, Passerone D. Small, 2010, 6:2266.
[25] Zhao S, Xue J, Liang L, Wang Y, Yan S. J. Phys. Chem. C, 2012, 116:11776.
[26] Palaniselvam T, Aiyappa H B, Kurungot S. J. Mater. Chem., 2012, 22:23799.
[27] Yan J, Fan Z, Sun W, Ning G, Wei T, Zhang Q, Zhang R, Zhi L, Wei F. Adv. Funct. Mater., 2012, 22:2632.
[28] Zhu X, Ning G, Ma X, Fan Z, Xu C, Gao J, Xu C, Wei F. J. Mater. Chem. A, 2013, 1:14023.
[29] Merchant C A, Healy K, Wanunu M, Ray V, Peterman N, Bartel J, Fischbein M D, Venta K, Luo Z, Johnson A T, Drndic M. Nano Lett., 2010, 10:2915.
[30] Han T H, Huang Y K, Tan A T, Dravid V P, Huang J. J. Am. Chem. Soc., 2011, 133:15264.
[31] Koenig S P, Wang L, Pellegrino J, Bunch J S. Nat. Nanotechnol., 2012, 7:728.
[32] Barone V, Hod O, Scuseria G E. Nano Lett., 2006, 6:2748.
[33] Li X, Wang X, Zhang L, Lee S, Dai H. Science, 2008, 319:1229.
[34] Yang J, Ma M, Li L, Zhang Y, Huang W, Dong X. Nanoscale, 2014, 6:13301.
[35] Qiu W, Nguyen P, Skafidas E. Phys. Chem. Chem. Phys., 2014, 16:1451.
[36] Pedersen T G, Flindt C, Pedersen J, Mortensen N A, Jauho A P, Pedersen K. Phys. Rev. Lett., 2008, 100:136804.
[37] Oswald W, Wu Z. Phys. Rev. B, 2012, 85(11).
[38] Zhang A, Teoh H F, Dai Z, Feng Y P, Zhang C. Appl. Phys. Lett., 2011, 98:023105.
[39] Hu L, Wyant S, Muniz A R, Ramasubramaniam A, Maroudas D. J. Appl. Phys., 2015, 117:024302.
[40] Carpenter C, Christmann A M, Hu L, Fampiou I, Muniz A, Ramasubramaniam A, Maroudas D. Appl. Phys. Lett., 2014, 104:141911.
[41] Mostério N C B, Fonseca A F. Phys. Rev. B, 2014, 89(19):195437.
[42] Lei Z, Christov N, Zhao X. Energ. Environ. Sci., 2011, 4:1866.
[43] Wu Z S, Sun Y, Tan Y Z, Yang S, Feng X, Müllen K. J. Am. Chem. Soc., 2012, 134:19532.
[44] Zheng C, Zhou X, Cao H, Wang G, Liu Z. J. Power Sources, 2014, 258:290.
[45] Berrada S, Nguyen V H, Querlioz D, Saint-Martin J, Alarcón A, Chassat C, Bournel A, Dollfus P. Appl. Phys. Lett., 2013, 103:183509.
[46] Wang H, Wang Q, Cheng Y, Li K, Yao Y, Zhang Q, Dong C, Wang P, Schwingenschlogl U, Yang W, Zhang X X. Nano Lett., 2012, 12:141.
[47] Sint K, Wang B, Král P. J. Am. Chem. Soc., 2008, 130:16448.
[48] Koenig S P, Wang L, Pellegrino J, Bunch J S. Nat. Nanotechnol., 2012, 7:728.
[49] Venkatesan B M, Bashir R. Nat. Nanotechnol., 2011, 6:615.
[50] Han S, Wu D, Li S, Zhang F, Feng X. Adv. Mater., 2014, 26:849-64.
[51] Yuan W, Chen J, Shi G. Mater. Today, 2014, 17:77.
[52] Fischbein M D, Drndi D? M. Appl. Phys. Lett., 2008, 93:113107.
[53] Ding J, Du K, Wathuthanthri I, Choi C H, Fisher F T, Yang E H. J. Vac. Sci. Technol. B, 2014, 32:06FF1.
[54] Thiele C, Felten A, Echtermeyer T J, Ferrari A C, Casiraghi C, v. Löhneysen H, Krupke R. Carbon, 2013, 64:84.
[55] Yi J, Lee D H, Lee W W, Park W I. J. Phys. Chem. Lett., 2013, 4:2099.
[56] Lin Y, Watson K A, Kim J W, Baggett D W, Working D C, Connell J W. Nanoscale, 2013, 5:7814.
[57] Tomita A, Tamai Y. J. Phys. Chem., 1974, 78:2254.
[58] Baker R, Sherwood R, Dumesic J. J. Catal., 1980, 66:56.
[59] Liu J, Cai H, Yu X, Zhang K, Li X, Li J, Pan N, Shi Q, Luo Y, Wang X. J. Phys. Chem. C, 2012, 116:15741.
[60] Di C A, Wei D, Yu G, Liu Y, Guo Y, Zhu D. Adv. Mater., 2008, 20:3289.
[61] Safron N S, Kim M, Gopalan P, Arnold M S. Adv. Mater., 2012, 24:1041.
[62] Seidel H, Csepregi L, Heuberger A, Baumgärtel H. J. Electrochem. Soc., 1990, 137:3612.
[63] Campos L C, Manfrinato V R, Sanchez-Yamagishi J D, Kong J, Jarillo-Herrero P. Nano Lett., 2009, 9:2600.
[64] Zhang Y, Li Z, Kim P, Zhang L, Zhou C. ACS Nano, 2011, 6:126.
[65] Geng D, Wu B, Guo Y, Luo B, Xue Y, Chen J, Yu G, Liu Y. J. Am. Chem. Soc., 2013, 135:6431.
[66] Kosynkin D V, Higginbotham A L, Sinitskii A, Lomeda J R, Dimiev A, Price B K, Tour J M. Nature, 2009, 458:872.
[67] Zhang Z, Sun Z, Yao J, Kosynkin D V, Tour J M. J. Am. Chem. Soc., 2009, 131:13460.
[68] Sinitskii A, Dimiev A, Kosynkin D V, Tour J M. ACS Nano, 2010, 4:5405.
[69] Zhao X, Hayner C M, Kung M C, Kung H H. ACS Nano, 2011, 5:8739.
[70] Wang X, Jiao L, Sheng K, Li C, Dai L, Shi G. Sci. Rep., 2013, 3:1996.
[71] Cheng K, He D, Peng T, Lv H, Pan M, Mu S. Electrochim. Acta, 2014, 132:356.
[72] Zhu Y, Murali S, Stoller M D, Ganesh K J, Cai W, Ferreira P J, Pirkle A, Wallace R M, Cychosz K A, Thommes M, Su D, Stach E A, Ruoff R S. Science, 2011, 332:1537.
[73] Zhang L L, Zhao X, Stoller M D, Zhu Y, Ji H, Murali S, Wu Y, Perales S, Clevenger B, Ruoff R S. Nano Lett., 2012, 12:1806.
[74] Yan J, Fan Z, Wei T, Qian W, Zhang M, Wei F. Carbon, 2010, 48:3825.
[75] Zhao X, Zhang L, Murali S, Stoller M D, Zhang Q, Zhu Y, Ruoff R S. ACS Nano, 2012, 6:5404.
[76] Zhou D, Cui Y, Xiao P W, Jiang M Y, Han B H. Nat. Commun., 2014, 5:4716.
[77] Nethravathi C, Rajamathi M. Carbon, 2008, 46:1994.
[78] Qian W, Hao R, Hou Y, Tian Y, Shen C, Gao H, Liang X. Nano Res., 2009, 2:706.
[79] Choucair M, Thordarson P, Stride J A. Nature Nanotechnol., 2009, 4:30.
[80] Zhang J, Guo B, Yang Y, Shen W, Wang Y, Zhou X, Wu H, Guo S. Carbon, 2015, 84:469.
[81] Yang R, Yang K. Carbon, 1985, 23:537.
[82] Han T H, Huang Y K, Tan A T, Dravid V P, Huang J. J. Am. Chem. Soc., 2011, 133:15264.
[83] Wu X F, Zhang J, Zhuang Y F, Li J, Han L C, Xiao F J. J. Mater. Sci., 2014, 50:1317.
[84] Williams G, Seger B, Kamat P V. ACS Nano, 2008, 2:1487.
[85] Akhavan O. Carbon, 2011, 49:11.
[86] Akhavan O. ACS Nano, 2010, 4:4174.
[87] Palaniselvam T, Valappil M O, Illathvalappil R, Kurungot S. Energ. Environ. Sci., 2014, 7:1059.
[88] Peng Y Y, Liu Y M, Chang J K, Wu C H, Ger M D, Pu N W, Chang C L. Carbon, 2015, 81:347.
[89] Lin Y, Han X, Campbell C J, Kim J W, Zhao B, Luo W, Dai J, Hu L. Adv. Func. Mater., 2015, 25:2920.
[90] Mangadlao J D, de Leon A C C, Felipe M J L, Advincula R C. Chem. Commun., 2015, 51:7629.
[91] Shao Y, Zhang S, Wang C, Nie Z, Liu J, Wang Y, Lin Y. J. Power. Sources, 2010, 195:4600.
[92] He D, Jiang Y, Lv H, Pan M, Mu S. Appl. Catal. B- Environ., 2013, 132:379.
[93] He D, Kou Z, Xiong Y, Cheng K, Chen X, Pan M, Mu S. Carbon, 2014, 66:312.
[94] He D, Cheng K, Li H, Peng T, Xu F, Mu S, Pan M. Langmuir, 2012, 28:3979.
[95] Lv X, Lv W, Wei W, Zheng X, Zhang C, Zhi L, Yang Q H. Chem. Commun., 2015, 51:3911.
[96] Su C, Acik M, Takai K, Lu J, Hao S J, Zheng Y, Wu P, Bao Q, Enoki T, Chabal Y J, Loh K P. Nat. Commun., 2012, 3:1298.
[97] Stoller M D, Park S, Zhu Y, An J, Ruoff R S. Nano Lett., 2008, 8:3498.
[98] Fan Z, Zhao Q, Li T, Yan J, Ren Y, Feng J, Wei T. Carbon, 2012, 50:1699.
[99] Zhu Y, Murali S, Stoller M D, Ganesh K, Cai W, Ferreira P J, Pirkle A, Wallace R M, Cychosz K A, Thommes M. Science, 2011, 332:1537.
[100] Wang H, Sun X, Liu Z, Lei Z. Nanoscale, 2014, 6:6577.
[101] Yoo E, Kim J, Hosono E, Zhou H S, Kudo T, Honma I. Nano Lett., 2008, 8:2277.
[102] Uthaisar C, Barone V. Nano Lett., 2010, 10:2838.
[103] Fan Z, Yan J, Ning G, Wei T, Zhi L, Wei F. Carbon, 2013, 60:558.
[104] Zhu X, Zhu Y, Murali S, Stoller M D, Ruoff R S. ACS Nano, 2011, 5:3333.
[105] Zhu X, Song X, Ma X, Ning G. ACS Appl. Mater. Inter., 2014, 6:7189.
[106] Jiao L, Zhang L, Wang X, Diankov G, Dai H. Nature, 2009, 458:877.
[107] Son Y W, Cohen M L, Louie S G. Nature, 2006, 444:347.
[108] Chen Z, Lin Y M, Rooks M J, Avouris P. Physica E., 2007, 40:228.
[109] Liu L, Zhang Y, Wang W, Gu C, Bai X, Wang E. Adv. Mater., 2011, 23:1246.
[110] Schedin F, Geim A, Morozov S, Hill E, Blake P, Katsnelson M, Novoselov K. Nat. Mater., 2007, 6:652.
[111] Wehling T, Novoselov K, Morozov S, Vdovin E, Katsnelson M, Geim A, Lichtenstein A. Nano lett., 2008, 8:173.
[112] Fowler J D, Allen M J, Tung V C, Yang Y, Kaner R B, Weiller B H. ACS Nano, 2009, 3:301.
[113] Robinson J A, Snow E S, Badescu S C, Reinecke T L, Perkins F K. Nano Lett., 2006, 6:1747.
[114] Zhang Y H, Chen Y B, Zhou K G, Liu C H, Zeng J, Zhang H L, Peng Y. Nanotechnology, 2009, 20:185504.
[115] Suk M E, Aluru N. J. Phys. Chem. Lett., 2010, 1:1590.
[116] Cohen-Tanugi D, Grossman J C. Nano Lett., 2012, 12:3602.
[117] Surwade S P, Smirnov S N, Vlassiouk I V, Unocic R R, Veith G M, Dai S, Mahurin S M. Nat. Nanotechnol., 2015.
[118] Liu H, Dai S, Jiang D E. Nanoscale, 2013, 5:9984.
[119] Suk M E, Aluru N R. J. Chem. Phys., 2014, 140:084707.
[120] Sun C, Boutilier M S, Au H, Poesio P, Bai B, Karnik R, Hadjiconstantinou N G. Langmuir, 2014, 30:675.
[121] Kasianowicz J J, Brandin E, Branton D, Deamer D W. Proc. Natl. Acad. Sci. U. S. A., 1996, 93:13770.
[122] Fologea D, Gershow M, Ledden B, McNabb D S, Golovchenko J A, Li J. Nano Lett., 2005, 5:1905.
[123] 林祥钦(Lin X Q), 李国霞(Li G X). 化学进展(Progress in Chemistry), 2011, 23:800.
[124] Peng S, Yang Z, Ni X, Zhang H, Ouyang J, Fangping O. Mater. Res. Express, 2014, 1:015044.
[125] Garaj S, Hubbard W, Reina A, Kong J, Branton D, Golovchenko J A. Nature, 2010, 467:190.
[126] Garaj S, Liu S, Golovchenko J A, Branton D. Proc. Natl. Acad. Sci.U. S. A., 2013, 110:12192.
[1] 李帅, 朱娜, 程扬健, 陈缔. NH3选择性催化还原NOx的铜基小孔分子筛耐硫性能及再生研究[J]. 化学进展, 2023, 35(5): 771-779.
[2] 何静, 陈佳, 邱洪灯. 中药碳点的合成及其在生物成像和医学治疗方面的应用[J]. 化学进展, 2023, 35(5): 655-682.
[3] 王芷铉, 郑少奎. 选择性离子吸附原理与材料制备[J]. 化学进展, 2023, 35(5): 780-793.
[4] 兰明岩, 张秀武, 楚弘宇, 王崇臣. MIL-101(Fe)及其复合物催化去除污染物:合成、性能及机理[J]. 化学进展, 2023, 35(3): 458-474.
[5] 张永, 张辉, 张逸, 高蕾, 卢建臣, 蔡金明. 表面合成异质原子掺杂的石墨烯纳米带[J]. 化学进展, 2023, 35(1): 105-118.
[6] 杨世迎, 李乾凤, 吴随, 张维银. 铁基材料改性零价铝的作用机制及应用[J]. 化学进展, 2022, 34(9): 2081-2093.
[7] 龚智华, 胡莎, 金学平, 余磊, 朱园园, 古双喜. 磷酸酯类前药的合成方法与应用[J]. 化学进展, 2022, 34(9): 1972-1981.
[8] 宝利军, 危俊吾, 钱杨杨, 王雨佳, 宋文杰, 毕韵梅. 酶响应性线形-树枝状嵌段共聚物的合成、性能及应用[J]. 化学进展, 2022, 34(8): 1723-1733.
[9] 古孝雪, 于晶, 杨明英, 帅亚俊. 丝素蛋白3D打印在生物医学领域中的应用[J]. 化学进展, 2022, 34(6): 1359-1368.
[10] 李诗宇, 阴永光, 史建波, 江桂斌. 共价有机框架在水中二价汞吸附去除中的应用[J]. 化学进展, 2022, 34(5): 1017-1025.
[11] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[12] 姜鸿基, 王美丽, 卢志炜, 叶尚辉, 董晓臣. 石墨烯基人工智能柔性传感器[J]. 化学进展, 2022, 34(5): 1166-1180.
[13] 徐妍, 苑春刚. 纳米零价铁复合材料制备、稳定方法及其水处理应用[J]. 化学进展, 2022, 34(3): 717-742.
[14] 张辉, 熊玮, 卢建臣, 蔡金明. 超高真空下纳米石墨烯磁性及调控[J]. 化学进展, 2022, 34(3): 557-567.
[15] 邵秀丽, 王驷骐, 张轩, 李军, 王宁宁, 王政, 袁忠勇. 纳米片层结构MFI分子筛的合成及应用[J]. 化学进展, 2022, 34(12): 2651-2666.
阅读次数
全文


摘要

多孔石墨烯材料