English
新闻公告
More
化学进展 2015, Vol. 27 Issue (11): 1604-1614 DOI: 10.7536/PC150403 前一篇   后一篇

• 综述与评论 •

碳量子点的合成与应用

黄启同1,2*, 林小凤1*, 李飞明1,3, 翁文1, 林丽萍1,3, 胡世荣1*   

  1. 1. 闽南师范大学化学与环境学院 漳州 363000;
    2. 漳州职业技术学院食品与生物工程系 漳州 363000;
    3. 厦门大学化学与化工学院 厦门 361005
  • 收稿日期:2015-04-01 修回日期:2015-06-01 出版日期:2015-11-15 发布日期:2015-09-18
  • 通讯作者: 黄启同, 林小凤, 胡世荣 E-mail:hqtblue@163.com;lxf0596@163.com;hushirong6666@163.com
  • 基金资助:
    国家质检总局科技计划项目(No.2012QK053)、福建省质量技术监督局科技项目(No.3002A91429)、福建省高校产学合作科技重大项目(No.2012H6026)、福建省自然科学基金项目(No.2012D136)、福建省教育厅科技项目(No.JB14180)资助

Synthesis and Applications of Carbon Dots

Huang Qitong1,2*, Lin Xiaofeng1*, Li Feiming1,3, Weng Wen1, Lin Liping1,3, Hu Shirong1*   

  1. 1. College of Chemistry and Environmental, Minnan Normal University, Zhangzhou 363000, China;
    2. Department of Food and Biological Engineering, Zhangzhou Institute of Technology, Zhangzhou 363000, China;
    3. College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
  • Received:2015-04-01 Revised:2015-06-01 Online:2015-11-15 Published:2015-09-18
  • Supported by:
    The work was supported by the Science and Technology Foundation of the National General Administration of Quality Supervision in China(No.2012QK053),the Science and Technology Foundation of Fujian Province Bureau of Quality and Technical Supervision(No.3002A91429),the Key Project of Industry University Research of Science and Technology Department of Fujian Province(No.2012H6026), the Fujian Province Natural Science Foundation(No.2012D136), and the Education Bureau of Fujian Province of China(No.JB14180).
近年来,由于碳纳米材料具有高的催化活性以及好的稳定性等优点,其在科学、工程以及商业领域都得到了广泛的应用。其中新型"零维"碳纳米材料--碳量子点(carbon dots, CDs)具有荧光信号稳定、无光闪烁、激发波长和发射波长可调控等独特的光学性质,以及生物毒性小和生物相容性好等优势,逐渐成为碳纳米材料的研究热点,广泛应用于生物成像、生物细胞标记、传感器、光催化、太阳能电池以及发光元件等领域。本文主要综述了CDs的不同合成方法(包括自上而下法和自下而上法)及其应用。
In recent years, nanomaterials have made an important impact on diverse science, engineering, and commercial sectors due to their high catalysis, low cost, and good stability. Acting as a class of 'zero-dimensional' carbon nanomaterials, carbon dots(CDs) possess unique optical properties of high photostability against photobleaching, tunable excitation and emission wavelength, as well as low cytotoxicity and good biocompatibility. Therefore, CDs have become a hot subject of carbon nanomaterial in the past decade, not only for its unique properties but also for its applications in various fields such as bioimaging, biolabeling, sensors, photocatalysis, solar cells, light-emitting element and so on. This article reviews the different synthetic methodologies(including two classes: top-down and bottom-up) to achieve good performance of CDs. At the same time, the applications of CDs are also reviewed in the article.

Contents
1 Introduction
2 Synthesis methods of carbon dots
2.1 Top-down methods
2.2 Bottom-up methods
3 Applications of carbon dots
3.1 Bioimaging and Biolabeling
3.2 Sensors
3.3 Photocatalysis
3.4 Solar cells
3.5 Light-emitting diodes
4 Conclusion

中图分类号: 

()
[1] 廖建国(Liao J G), 李艳群(Li Y Q), 段星泽(Duan X Z)朱伶俐(Zhu L L), 化学进展(Progress in Chemistry), 2015, 27(2/3):220.
[2] Lim S Y, Shen W, Gao Z. Chem. Soc. Rev., 2015, 44(1):362.
[3] Yin P T, Shah S, Chhowalla M, Lee K B. Chem. Rev., 2015, 115(7):2483.
[4] Li S X, Lin X, Zheng F Y, Liang W, Zhong Y, Cai J. Anal. Chem., 2014, 86(14):7079.
[5] 张茜(Zhang Q), 朱艳红(Zhu Y H), 徐辉碧(Xu H B), 杨祥良(Yang X L). 化学进展(Progress in Chemistry), 2015, 27(2/3):275.
[6] Li H, Kang Z, Liu Y, Lee S T. J. Mater. Chem., 2012, 22:24230.
[7] 林丽萍(Lin L P). 漳州师范学院硕士论文(Mater Dissertation of Zhangzhou Normal University), 2012.
[8] Miao P, Han K, Tang Y, Wang B, Lin T, Cheng W. Nanoscale, 2015, 7:1586.
[9] Lim S Y, Shen W, Gao Z Q. Chem. Soc. Rev., 2015, 44:362.
[10] 颜范勇(Yan F Y), 邹宇(Zou Y), 王猛(Wang M), 代林枫(Dai L F), 周旭光(Zhou X G), 陈莉(Chen L). 化学进展(Progress in Chemistry), 2014, 26:61.
[11] Xu X, Ray R, Gu Y, Ploehn H J, Gearheart L, Raker K, Scrivens W A. J. Am. Chem. Soc., 2004, 126:12736.
[12] Zhou J, Booker C, Li R, Zhou X, Sham T, Sun X, Ding Z. J. Am. Chem. Soc., 2007, 129:744.
[13] Lu J, Yang J, Wang J, Lim A, Wang S, Loh K P. ACS Nano, 2009, 3:2367.
[14] Li H, He X, Kang Z, Huang H, Liu Y, Liu J, Lian S, Tsang C H A. Yang X, Lee S T. Angew. Chem. Int. Ed., 2010, 49:4430.
[15] Shinde D B, Pillai V K. Chem. Eur. J., 2012, 18:12522.
[16] Zhao Q L, Zhang Z L, Huang B H, Peng J, Zhang M, Pang D W. Chem. Commun., 2008, 41:5116.
[17] Bao L, Zhang Z L, Tian Z Q, Zhang L, Liu C, Lin Y, Qi B P, Pang D W. Adv. Mater., 2011, 23:5801.
[18] Tan D, Yamada Y, Zhou S, Shimotsuma Y, Miura K, Qiu J. Carbon, 2014, 69:638.
[19] Hu S, Niu K, Sun J, Yang J, Zhao N, Du X. J. Mater. Chem., 2009, 19:484.
[20] Sun Y P, Zhou B, Lin Y, Wang W, Fernando K A S, Pathak P, Meziani M J, Harruff B A, Wang X, Wang H, Luo P G, Yang H, Kose M E, Chen B, L. Veca M, Xie S Y. J. Am. Chem. Soc.,2006, 128(24):7756.
[21] Bourlinos A B, Stassinopoulos A, Anglos D, Zboril R, Georgakilas V, Giannelis E P. Chem. Mater., 2008, 20(14):4539.
[22] Liu R, Wu D, Liu S, Koynov K, Knoll W, Li Q. Angew. Chem., 2009, 121:4668.
[23] Liu Y, Xiao N, Gong N, Wang H, Shi X, Gu W, Ye L. Carbon, 2014, 68:258.
[24] Zhu H, Wang X L, Li Y, Wang Z J, Yang F, Yang X R. Chem. Commun., 2009, 5118.
[25] Wang J, Cheng C, Yuan H, Zheng B, Yuan H, Bo L, Zheng M W, Yang S Y, Guo Y, Xiao D. J. Mater. Chem. C, 2014, 2:5028.
[26] Li H, He X, Liu Y, Huang H, Lian S, Lee S, Kang Z. Carbon, 2011, 49:605.
[27] Ma Z, Ming H, Huang H, Liu Y, Kang Z. New J. Chem., 2012, 36:861.
[28] Chen B, Li F, Li S, Weng W, Guo H, Guo T, Zhang X, Chen Y, Huang T, Hong X, You S, Lin Y, Zeng K, Chen S. Nanoscale, 2013, 5(5):1967.
[29] Bourlinos A B, Stassinopoulos A, Anglos D, Zboril R, Karakassides M, Giannelis E P. Small, 2008,4(4):455.
[30] Nie H, Li M, Li Q, Liang S, Tan Y, Sheng L, Shi W, Zhang S X A. Chem. Mater., 2014, 26:3104.
[31] Liu H, Ye T, Mao C. Angew. Chem. Int. Ed., 2007, 46:6473.
[32] Peng H,Travas-Sejdic J. Chem. Mater., 2009, 21(23):5563.
[33] Wu Z L, Zhang P, Gao M X, Liu C F, Wang W, Leng F, Huang C Z. J. Mater. Chem. B, 2013, 1:2868.
[34] Zhu S, Meng Q, Wang L, Zhang J, Song Y, Jin H, Zhang K, Sun H, Wang H, Yang B. Angew. Chem., 2013, 125:4045.
[35] Fan R J, Sun Q, Zhang L, Zhang Y, Lu A H. Carbon, 2014, 71:87.
[36] Li C L, Ou C M, Huang C C, Wu W C, Chen Y P, Lin T E, Ho L C, Wang C W, Shih C C, Zhou H C, Lee Y C, Tzeng W F, Chiou T J, Chu S T, Cang J, Chang H T. J. Mater. Chem. B, 2014, 2:4564.
[37] Yang S, Cao L, Luo P G, Lu F, Wang X, Wang H, Meziani M J, Liu Y, Qi G, Sun Y. J. Am. Chem. Soc., 2009, 131:11308.
[38] Cao L, Wang X, Mezsiani M J, Lu F, Wang H, Luo P G, Lin Y, Harruff B A, Veca L M. Murray D, Xie S Y, Sun Y P. J. Am. Chem. Soc., 2007, 129:11318.
[39] Xu Z Q, Yang L Y, Fan X Y, Jin J C, Mei J, Peng W, Jiang F L, Xiao Q, Liu Y. Carbon, 2014, 66:351.
[40] Zhang H, Huang Y, Hu S, Huang Q, Wei C, Zhang W, Kang L, Huang Z, Hao A. J. Mater. Chem. C, 2015, 3(9):2093.
[41] Choi C K K, Li J, Wei K, Xu Y J, Ho L W C, Zhu M, To K K W, Choi C H J, Bian L. J. Am. Chem. Soc., 2015, 137:7337.
[42] Zhang L, Huang Q, Lin C, Lin X, Huang Y, Liu J, Ma X. J. Lumin., 2014, 156:124.
[43] 景晓彤(Jing X T), 于法标(Yu F B), 陈令新(Chen L X). 化学进展(Progress in Chemistry), 2014, 26(05):866.
[44] Liu J M, Lin L, Wang X X, Jiao L, Cui M L, Jiang S L, Cai W L, Zhang L H, Zheng Z Y. Analyst, 2013, 138(1):278.
[45] Liu J M, Lin L P, Wang X X, Lin S Q, Cai W L, Zhang L H, Zheng Z Y. Analyst, 2012, 137:2637.
[46] Dong Y, Wang R, Li G, Chen C, Chi Y, Chen G. Anal. Chem., 2012, 84(14):6220.
[47] Bai W J, Zheng H Z, Long Y J, Mao X J, Gao M, Zhang L Y. Anal. Sci., 2011, 27(3):243.
[48] Qu K G, Wang J S, Ren J S, Qu X G. Chem. Eur. J., 2013, 19(22):7243.
[49] Zhang Y, Wang L, Zhang H, Liu Y, Wang H, Kang Z, Lee S T. RSC Adv., 2013, 3(11):3733.
[50] Lu W, Qin X, Liu S, Chang G, Zhang Y, Luo Y, Asiri A M, Al-Youbi A O, Sun X. Anal. Chem., 2012, 84(12):5351.
[51] Goncalves H, Duarte A J, Davis F, Higson S P J, Esteves da S J C G. Anal. Chim. Acta, 2012, 735(20):90.
[52] Li H, Zhai J, Sun X. Langmuir, 2011, 27(8):4305.
[53] Yin B, Deng J, Peng X, Long Q, Zhao J, Lu Q, Chen Q, Li H, Tang H, Zhang Y, Yao S. Analyst, 2013, 138(21):6551.
[54] Dong Y, Wang R, Tian W, Chi Y, Chen G. RSC Adv., 2014, 4(8):3701.
[55] Qin X, Lu W, Asiri A M, Al-Youbi A O, Sun X. Catal. Sci. Technol., 2013, 3(4):1027.
[56] Shen P, Xia Y. Analy. Chem., 2014, 86(11):5323.
[57] Wang C I, Periasamy A P, Chang H T. Anal. Chem., 2013, 85(6):3263.
[58] Xu B, Zhao C, Wei W, Ren J, Miyoshi D, Sugimoto N, Qu X. Analyst, 2012, 137(23):5483.
[59] Liu J, Li J, Jiang Y, Yang S, Tan W, Yang R. Chem. Commun., 2011, 47(40):11321.
[60] Zhou L, Lin Y, Huang Z, Ren J, Qu X. Chem. Commun., 2012, 48(8):1147.
[61] Liu J, Wagan S, Dávila-Morris M, Taylor J, White R J. Anal. Chem., 2014, 86(22):11417.
[62] Zhang H, Huang Q, Huang Y, Li F, Zhang W, Wei C, Chen J, Dai P, Huang L, Huang Z, Kang L, Hu S, Hao A. Electrochim. Acta, 2014, 142:125.
[63] Liu J, Morris M D, Macazo F C, Schoukroun-Barnes L R, White R J. J. Electrochem. Soc., 2014, 161:H301.
[64] 方莉(Fang L), 贺进禄(He J L). 化学进展(Progress in Chemistry), 2015, 27(05):585.
[65] Huang Q, Hu S, Zhang H, Chen J, He Y, Li F, Weng W, Ni J, Bao X, Lin Y. Analyst, 2013, 138(18):5417.
[66] Huang Q, Zhang H, Hu S, Li F, Weng W, Chen J, Wang Q, He Y, Zhang W, Bao X. Biosens. Bioelectron., 2014, 52:277.
[67] Huang Q, Lin X, Lin C, Zhang Y, Hu S, Wei C. RSC Adv., 2015, 5:54102.
[68] Hu S, Huang Q, Lin Y, Wei C, Zhang H, Zhang W, Guo Z, Bao X, Shi J, Hao A. Electrochim. Acta, 2014, 130:805.
[69] Wei C, Huang Q, Hu S, Zhang H, Zhang W, Wang Z, Zhu M, Dai P, Huang L. Electrochim. Acta, 2014, 149:237.
[70] Dai H, Xu G, Gong L, Yang C, Lin Y, Tong Y, Chen J, Chen G. Electrochim. Acta, 2012, 80:362.
[71] Sheng M, Gao Y, Sun J, Gao F. Biosens. Bioelectron., 2014, 58:351.
[72] Shao X, Gu H, Wang Z, Chai X, Tian Y, Shi G. Anal. Chem., 2013, 85(1):418.
[73] Jiang G, Jiang T, Zhou H, Yao J, Kong X. RSC Adv., 2015, 5:9064.
[74] Li Q, Xu Z, Tang W, Wu Y. Anal. Lett., 2015, 48(13):2040.
[75] Zhang H, Dai P, Huang L, Huang Y, Huang Q, Zhang W, Wei C, Hu S. Anal. Methods, 2014, 6:2687.
[76] Li Y, Zhong Y, Zhang Y, Weng W, Li S. Sensor. Actuat. B:Chem., 2015, 206:735.
[77] Zhang L, Han Y, Zhu J, Zhai Y, Dong S. Anal. Chem., 2015, 87:2033.
[78] 杨帆(Yang F), 王伶俐(Wang L L), 郭志慧(Guo Z H). 化学学报(Acta Chimica Sinica), 2012, 70(11):1283.
[79] Wu L, Wang J, Ren J, Li W, Qu X. Chem. Commun., 2013, 49(50):5675.
[80] Zhang M, Liu H, Chen L, Yan M, Ge L, Ge S, Yu J. Biosens. Bioelectron., 2013, 49:79.
[81] 周丽(Zhou L), 邓慧萍(Deng H P), 张为(Zhang W). 化学进展(Progress in Chemistry), 2015, 27(4):349.
[82] Lin X, Chen Y, Li S. Anal. Methods, 2013, 5(22):6480.
[83] Liu J, Zhu W, Yu S, Yan X. Carbon, 2014, 79:369.
[84] 张金水(Zhang J S), 王博(Wang B), 王心晨(Wang X C). 化学进展(Progress in Chemistry), 2013, 26(01):19.
[85] Ming H, Ma Z, Liu Y, Pan K, Yu H, Wang F, Kang Z. Dalton Trans., 2012, 41(31):9526.
[86] Zhang X, Wang F, Huang H, Li H, Han X, Liu Y, Kang Z. Nanoscale, 2013, 5(6):2274.
[87] Yu H, Zhang H, Huang H, Liu Y, Li H, Ming H, Kang Z. New J. Chem., 2012, 36(4):1031.
[88] Liu J, Liu Y, Liu N, Han Y, Zhang X, Huang H, Lifshitz Y, Lee S T, Zhong J, Kang Z. Science, 2015, 347(6225):970.
[89] Zhang H, Ming H, Lian S, Huang H, Li H, Zhang L, Liu Y, Kang Z, Lee S T. Dalton Trans., 2011, 40(41):10822.
[90] Zhang H, Huang H, Ming H, Li H, Zhang L, Liu Y, Kang Z. J. Mater. Chem., 2012, 22(21):10501.
[91] Li H, Liu R, Liu Y, Huang H, Yu H, Ming H, Lian S, Lee S T, Kang Z. J. Mater. Chem., 2012, 22(34):17470.
[92] Mirtchev P, Henderson E J, Soheilnia N, Yip C M, Ozin G A. J. Mater. Chem., 2012, 22:1265.
[93] Zhang Y Q, Ma D K, Zhang Y G, Chen W, Huang S M. Nano Energy, 2013 2:545.
[94] Xiong H, Zhang X, Dong B, Lu H, Zhao L, Wan L, Dai G, Wang S. Electrochim. Acta, 2013, 88:100.
[95] Wang F, Chen Y, Liu C, Ma D. Chem. Commun., 2011, 47:3502.
[96] Shen C, Wang J, Cao Y, Lu Y. J. Mater. Chem. C, 2015, DOI:10.1039/C5TC01156F.
[97] Jiang K, Sun S, Zhang L, Lu Y, Wu A, Cai C, Lin H. Angew. Chem. Int. Ed., 2015, 54:5360.
[98] Wei W, Chen W. J. Power Sources, 2012, 204:85.
[99] Wang Q, Huang X, Long Y, Wang X, Zhang H, Zhu R, Liang L, Teng P, Zheng, H. Carbon, 2013, 59:192.
[100] Pandey S, Thakur M, Mewada A, Anjarlekar D, Mishra N, Sharon M. J. Mater. Chem. B, 2013, 1(38):4972.
[101] Hu S, Trinchi A, Atkin P, Cole I. Angew. Chem. Int. Ed., 2015, 54:2970.
[1] 何静, 陈佳, 邱洪灯. 中药碳点的合成及其在生物成像和医学治疗方面的应用[J]. 化学进展, 2023, 35(5): 655-682.
[2] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[3] 钱雪丹, 余伟江, 付濬哲, 王幽香, 计剑. 透明质酸基微纳米凝胶的制备及生物医学应用[J]. 化学进展, 2023, 35(4): 519-525.
[4] 张旭, 张蕾, 黄善恩, 柴之芳, 石伟群. 盐包合材料在高温熔盐体系中的合成及其潜在应用[J]. 化学进展, 2022, 34(9): 1947-1956.
[5] 龚智华, 胡莎, 金学平, 余磊, 朱园园, 古双喜. 磷酸酯类前药的合成方法与应用[J]. 化学进展, 2022, 34(9): 1972-1981.
[6] 宝利军, 危俊吾, 钱杨杨, 王雨佳, 宋文杰, 毕韵梅. 酶响应性线形-树枝状嵌段共聚物的合成、性能及应用[J]. 化学进展, 2022, 34(8): 1723-1733.
[7] 彭帅伟, 汤卓夫, 雷冰, 冯志远, 郭宏磊, 孟国哲. 仿生定向液体输送的功能材料表面设计与应用[J]. 化学进展, 2022, 34(6): 1321-1336.
[8] 马佳慧, 袁伟, 刘思敏, 赵智勇. 小分子共价DNA的组装及生物医学应用[J]. 化学进展, 2022, 34(4): 837-845.
[9] 蔡雪儿, 简美玲, 周少红, 王泽峰, 王柯敏, 刘剑波. 人造细胞的化学构建及其生物医学应用研究[J]. 化学进展, 2022, 34(11): 2462-2475.
[10] 赵自通, 张真真, 梁志宏. 催化水解反应的肽基模拟酶的活性来源、催化机理及应用[J]. 化学进展, 2022, 34(11): 2386-2404.
[11] 王学川, 王岩松, 韩庆鑫, 孙晓龙. 有机小分子荧光探针对甲醛的识别及其应用[J]. 化学进展, 2021, 33(9): 1496-1510.
[12] 洪俊贤, 朱旬, 葛磊, 徐鸣川, 吕文珍, 陈润锋. CsPbX3(X = Cl, Br, I) 纳米晶的制备及其应用[J]. 化学进展, 2021, 33(8): 1362-1377.
[13] 吴星辰, 梁文慧, 蔡称心. 碳量子点的荧光发射机制[J]. 化学进展, 2021, 33(7): 1059-1073.
[14] 王玉冰, 陈杰, 延卫, 崔建文. 共轭微孔聚合物的制备与应用[J]. 化学进展, 2021, 33(5): 838-854.
[15] 江松, 王家佩, 朱辉, 张琴, 丛野, 李轩科. 二维材料V2C MXene的制备与应用[J]. 化学进展, 2021, 33(5): 740-751.
阅读次数
全文


摘要

碳量子点的合成与应用