English
新闻公告
More
化学进展 2015, Vol. 27 Issue (8): 1025-1032 DOI: 10.7536/PC150153 前一篇   后一篇

• 综述与评论 •

正渗透膜支撑层结构优化的研究进展

徐佳*, 唐媛媛, 高从堦   

  1. 中国海洋大学化学化工学院 海洋化学理论与工程技术教育部重点实验室 青岛 266100
  • 收稿日期:2015-01-01 修回日期:2015-04-01 出版日期:2015-08-15 发布日期:2015-06-05
  • 通讯作者: 徐佳 E-mail:jiapipi2@163.com
  • 基金资助:
    国家自然科学基金项目(No. 21306178)资助

Research Progress on Optimizing the Structure of Support Layers in Forward Osmosis Membrane

Xu Jia*, Tang Yuanyuan, Gao Congjie   

  1. Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
  • Received:2015-01-01 Revised:2015-04-01 Online:2015-08-15 Published:2015-06-05
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21306178).
随着世界经济高速发展和人口不断增长,全球淡水资源和能源危机日渐加剧。为了改善这一状况,人们将目光投向了海洋,海水淡化显示出强大的生命力。正渗透技术由于其低能耗,少污染,成为一种极具发展潜力的海水淡化新技术。正渗透膜作为其关键技术之一,已引起全世界相关学者的广泛关注。然而,正渗透膜支撑层中存在严重的内浓差极化现象,大幅降低了正渗透性能,是正渗透膜进一步发展和应用的瓶颈。针对此,本文以内浓差极化现象为线索,围绕支撑层材料与结构,介绍了传统支撑层(传统相转化支撑层和织物支撑层)的优化方法和新型支撑层(包括静电纺丝支撑层、纳米颗粒掺杂支撑层及新型相转化支撑层等)的特点、制备方法及结构对提高正渗透性能的贡献等。最后展望了未来正渗透膜支撑层材料和结构的发展趋势,以提高正渗透膜性能及在更多领域中的应用。
With the rapid development of world economy and the exponentially growing population, both freshwater shortages and energy crises have plagued many communities around the world. The ocean is expected to mitigate the problems because seawater desalination has shown strong vitality. Forward osmosis is becoming a potential technology of producing both clean energy and clean water due to its low energy consumption and less pollution. However, the internal concentration polarization in the support layer is the main barrier to restrict the performance of forward osmosis membrane. This paper focuses on the internal concentration polarization to introduce the materials and structure of the support layer, in particular, the optimization of traditional support layer (traditional phase inversion support layer and fabrics support layer) and the characteristics and preparation methods of the novel support layer (electrostatic spinning support layer, nanoparticles doped support layer and novel phase inversion support layer). Meanwhile, the paper prospects the development trend of support layer, so that the forward osmosis technology can further expand in different fields.

Contents
1 Introduction
2 The internal concentration polarization and membrane structure parameters of forward osmosis membranes
2.1 The internal concentration polarization
2.2 Membrane structure parameters
3 The improvement of traditional support layer structure
3.1 Phase inversion support layer
3.2 Fabrics support layer
4 The novel forward osmosis membrane support layer
4.1 Electrostatic spinning support layer
4.2 Nanoparticles doped support layer
4.3 Novel phase inversion support layer
5 Conclusion and outlook

中图分类号: 

()
[1] Han G, Chung T S, Toriida M, Tamai S. Journal of Membrane Science, 2012, 423: 543.
[2] 李刚(Li G), 李雪梅(Li X M), 柳越(Liu Y), 王铎(Wang D), 何涛(He T), 高从堦(Gao C J).化学进展(Progress in Chemistry), 2010, 22(5): 812.
[3] Xu J, Ruan G, Chu X, Yao Y, Su B W, Gao C J. Desalination, 2007, 207(1): 216.
[4] Service R F. Science, 2006, 313(5790) :1088.
[5] McGinnis R L, Elimelech M. Desalination, 2007, 207(1/3): 370.
[6] Khaydarov R A, Khaydarov R R, Desalination, 2007, 217: 225.
[7] Choi Y J, Choi J S, Oh H J, Lee S,Yang D R, Kim J H. Desalination, 2009, 247(1): 239.
[8] Elimelech M. Membrane Technology, 2007, 2007(1): 7.
[9] Holloway R W, Childress A E, Dennett K E, Cath T Y. Water Research, 2007, 41(17): 4005.
[10] York R J, Thiel R S, Beaudry E G. Proceedings of the Seventh International Waste Management and Landfill Symposium (Sardinia'99), Cagliari. 1999.
[11] Yangali-Quintanilla V, Li Z, Valladares R, Li Q, Amy G. Desalination, 2011, 280(1):160.
[12] Li D, Zhang X, Simon G P, Wang H. Water Research, 2013, 47(1): 209.
[13] Lutchmiah K, Verliefde A R D, Roest K, Rietveld L C, Cornelissen E R. Water Research, 2014, 58: 179.
[14] Garcia-Castello E M, McCutcheon J R, Elimelech M. Journal of Membrane Science, 2009, 338(1): 61.
[15] Petrotos K B, Lazarides H N. Journal of Food Engineering, 2001, 49(2): 201.
[16] Gerstandt K, Peinemann K V, Skilhagen S E, Thorsen T, Holt T. Desalination, 2008, 224(1): 64.
[17] McGinnis R L, McCutcheon J R, Elimelech M. Journal of Membrane Science, 2007, 305(1): 13.
[18] Wang K Y, Chung T S, Qin J J. Journal of Membrane Science, 2007, 300(1): 6.
[19] Fang W, Wang R, Chou S, Setiawan L, Fane A G. Journal of Membrane Science, 2012, 394: 140.
[20] 林红军(Lin H J), 陈建荣(Chen J R), 陆晓峰(Lu X F), 王方圆(Wang F Y), 洪嫦娥(Hong C E). 环境科学与技术(Environmental Science & Technology), 2010, (S2): 411.
[21] Xu J, Feng X S, Gao C J. Journal of Membrane Science, 2011, 370(1): 116.
[22] 李刚(Li G), 李雪梅(Li X M), 王铎(Wang D), 何涛(He T), 高从堦(Gao C J). 化工进展(Chemical Industry And Engineering Progress), 2010 (8): 1388.
[23] 王亚琴(Wang Y Q),徐铜文(Xu T W),王焕庭(Wang H T). 化工学报(CIESC Journal), 2013, 64(1): 252.
[24] Kuang W, Liu Z, Yu H, Kang G, Jie X, Jin Y, Cao Y. J. Membrane Science, 2015, DOI: 10.1016/j.memsci.2015.06.052.
[25] Gray G T, McCutcheon J R, Elimelech M. Desalination, 2006, 197(1): 1.
[26] 施人莉(Shi R L),杨庆峰(Yang Q F). 化工进展(Chemical Industry and Engineering Progress), 2011, 30(1): 66.
[27] 刘子文(Liu Z W),黄肖容(Huang X R),刘文龙(Liu W L). 现代化工(Modern Chemistry Industry), 2013(7): 34.
[28] Wei J, Qiu C, Tang C Y, Wang R, Fane A G. Journal of Membrane Science, 2011, 372(1): 292.
[29] Cath T Y, Childress A E, Elimelech M. Journal of Membrane Science, 2006, 281(1): 70.
[30] McCutcheon J R, Elimelech M. Journal of Membrane Science, 2006, 284(1): 237.
[31] Kim S, Hoek E. Desalination, 2005, 186(1): 111.
[32] Mulder M, Basic Principles of Membrane Technology. Dordrecht: Kluwer Academic Publishers, 1996.
[33] McCutcheon J R, McGinnis R L, Elimelech M. Journal of Membrane Science, 2006, 278(1/2): 114.
[34] 高从堦(Gao C J), 郑根江(Zheng G J), 汪锰(Wang M), 王铎(Wang D), 高学理(Gao X L), 周勇(Zhou Y). 水处理技术(Technology of Water Treatment), 2008 (2): 1.
[35] Lee K P, Arnot T C, Mattia D. Journal of Membrane Science, 2011, 370(1): 1.
[36] Tan C H, Ng H Y. Journal of Membrane Science, 2008, 324(1): 209.
[37] Jung D H, Lee J, Kim D Y, Lee Y G, Park M, Lee S, Yang D R, Kim J H. Desalination, 2011, 277(1/3): 83.
[38] Xu Y, Peng X Y, Tang C Y Y, Fu Q S A, Nie S Z. Journal of Membrane Science, 2010, 348(1/2): 298.
[39] Zhao S, Zou L. Journal of Membrane Science, 2011, 379(1): 459.
[40] Park M, Lee J J, Lee S, Kim J H. Journal of Membrane Science, 2011, 375(1): 241.
[41] Ma N, Wei J , Qi S ,Zhao Y, Gao Y , Tang C Y. Journal of Membrane Science, 2013, 441: 54.
[42] Wang R, Shi L, Tang C Y, Chou S R, Qiu C, Fane A G. Journal of Membrane Science, 2010, 355(1): 158.
[43] Yip N Y, Tiraferri A, Phillip W A,Schiffman J D, Elimelech M. Environmental Science & Technology, 2010, 44(10): 3812.
[44] Tiraferri A, Yip N Y, Phillip W A, Schiffman J D, Elimelech M. Journal of Membrane Science, 2011, 367(1): 340.
[45] Widjojo N, Chung T S, Weber M, Maletzko C, Warzelhan V. Journal of Membrane Science, 2011, 383(1): 214.
[46] Zhou Z, Lee J Y, Chung T S. Chemical Engineering Journal, 2014, 249: 236.
[47] Widjojo N, Chung T S, Weber M, Maletzko C, Warzelhan V. Chemical Engineering Journal, 2013, 220: 15.
[48] Cho Y H, Han J, Han S, Guiver M D, Park H B. Journal of Membrane Science, 2013, 445: 220.
[49] Han J, Cho Y H, Kong H, Han S, Park H B. Journal of Membrane Science, 2013, 428: 533.
[50] Shaffer D L, Werber J R, Jaramillo H, Lin S, Elimelech M. Desalination, 2015, 356: 271.
[51] Ong R C, Chung T S, Wit J D, Helmer B J. Journal of Membrane Science, 2015(473): 63.
[52] Kang G D, Park H Y, Kang J K. EP 2531530A1, 2012.
[53] Wang C, Yang F, Liu L F, Fu Z, Xue Y. Journal of Membrane Science, 2009, 345(1): 223.
[54] Sairam M, Sereewatthanawut E, Li K, Bismarck A, Licingston A G. Desalination, 2011, 273(2): 299.
[55] Qiu C, Setiawan L, Wang R, Tang C Y, Fane A G. Desalination, 2012, 287: 266.
[56] Nguyen T P N, Yun E T, Kim I C, Kwon Y N. Journal of Membrane Science, 2013, 433: 49.
[57] Formhals A. US 1975504, 1934.
[58] 赵冬梅(Zhao D M). 东北林业大学博士论文(Doctoral Disertation of Northeast Forestry University), 2012.
[59] Gopal R, Kaur S, Ma Z, Chan C, Ramakrishna S, Matsuura T. Journal of Membrane Science, 2006, 281: 581.
[60] Song X, Liu Z, Sun D. Advanced Materials, 2011, 23: 3256.
[61] Hoover L A, Schiffman J D, Elimelech M. Desalination, 2013, 308: 73.
[62] Puguan J M C, Kim H S, Lee K J, Kim H. Desalination, 2014, 336: 24.
[63] Tian E L, Zhou H, Ren Y W, Mirza Z A, Wang X Z, Xiong S W. Desalination, 2014, 347: 207.
[64] Tian M, Qiu C, Liao Y, Chou S,Wang R. Separation and Purification Technology, 2013, 118: 727.
[65] Lee J Y, Qi S, Liu X, Li Y, Huo F, Tang C Y. Separation and Purification Technology, 2014, 124: 207.
[66] Emadzadeh D, Lau W J, Matsuura T, Ismail F A, Rahbari-Sisakht M. Journal of Membrane Science, 2014, 449: 74.
[67] Emadzadeh D, Lau W J, Matsuura T, Rahbari-Sisakht M, Ismail A F. Chemical Engineering Journal, 2014, 237: 70.
[68] Wang Y, Ou R, Wang H, Xu T. Journal of Membrane Science, 2015, 475: 281.
[69] Liu X, Ng H Y. Journal of Membrane Science, 2014, 469: 112.
[70] Luo L, Wang P, Zhang S, Han G, Chung T S. Journal of Membrane Science, 2014, 461: 28.
[1] 牛文辉, 张达, 赵振刚, 杨斌, 梁风. 钠基-海水电池的发展:“关键部件及挑战”[J]. 化学进展, 2023, 35(3): 407-420.
[2] 董宝坤, 张婷, 何翻. 柔性热电材料的研究进展及应用[J]. 化学进展, 2023, 35(3): 433-444.
[3] 丁朝, 杨维结, 霍开富, Leon Shaw. LiBH4储氢热力学和动力学调控[J]. 化学进展, 2021, 33(9): 1586-1597.
[4] 周世昊, 吴贤文, 向延鸿, 朱岭, 刘志雄, 赵才贤. 水系锌离子电池锰基正极材料[J]. 化学进展, 2021, 33(4): 649-669.
[5] 黄振宇, 涂正凯. 质子交换膜燃料电池电流密度分布特性和研究展望[J]. 化学进展, 2020, 32(7): 943-949.
[6] 邓璐遥, 李少路, 秦一文, 胡云霞. 抗污染薄层复合聚酰胺膜的结构设计及改性策略[J]. 化学进展, 2020, 32(12): 1895-1907.
[7] 张赛晖, 王悦, 柳开鹏, 王捷. 聚电解质型正渗透汲取液[J]. 化学进展, 2019, 31(7): 969-979.
[8] 梅以成, 杨宝卫. 酰胺电子等排体在先导化合物优化中的应用[J]. 化学进展, 2016, 28(9): 1406-1416.
[9] 唐媛媛, 徐佳, 陈幸, 高从堦. 正渗透脱盐过程的核心——正渗透膜[J]. 化学进展, 2015, 27(7): 818-830.
[10] 李东, 李文海, 董桂芳, 段炼, 王立铎. 有机光敏二极管的功能材料探索及其器件结构[J]. 化学进展, 2014, 26(12): 1889-1898.
[11] 董航, 张林, 陈欢林, 高从堦. 混合基质水处理膜:材料、制备与性能[J]. 化学进展, 2014, 26(12): 2007-2018.
[12] 黄美荣, 丁永波, 李新贵*. PVC膜离子选择电极检测下限的优化[J]. 化学进展, 2012, 24(08): 1560-1571.
[13] 李刚 李雪梅 柳越 王铎 何涛 高从堦. 正渗透原理及浓差极化现象[J]. 化学进展, 2010, 22(05): 812-821.
[14] 虞忠衡,包鹏.
π-σ轨道作用能分解法和限制π轨道作用的几何优化*
[J]. 化学进展, 2007, 19(9): 1239-1248.
[15] 赵勇,盛显良,翟锦. 染料敏化太阳能电池中TiO2光阳极研究进展*[J]. 化学进展, 2006, 18(11): 1452-1459.